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Abstract

This paper deals with the fractal dimension of a superfluid vortex tangle. It extends
a previous model [1] (which was proposed for very low temperature), and it proposes
an alternative random walk toy model, which is valid also for finite temperature. This
random walk model combines a recent Nemirovskii’s proposal, and a simple modelization
of a self-similar structure of vortex loops (mimicking the geometry of the loops of several
sizes which compose the tangle). The fractal dimension of the vortex tangle is then related
to the exponents describing how the vortex energy per unit length changes with the length
scales, for which we take recent proposals in the bibliography. The range between 1.35
and 1.75 seems the most consistent one.
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1. Introduction.

Superfluid turbulence in helium II is described as a chaotic tangle of
quantized vortex lines, whose core has a typical size of the order of the
atomic radius of helium. The quantum of circulation is κ = h/m, where h is
the Planck’s constant and m the mass of helium atom. Quantum turbulence
is present in many experimental situations: rotating helium, counterflow
turbulence (heat flux without mass flux), turbulence caused by oscillating
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grid and so on. In contrast with classical fluids, an increase of forces acting
on liquid helium II does not imply a growth in the circulation of the vortices,
which is fixed, but of the total length of vortex lines. Thus, it is clear why
the growth of turbulence is usually connected to the vortex line length per
unit volume, L, briefly called vortex line density [2–6]. However, current
descriptions aim to go beyond the use of L by incorporating additional
information, as for instance some statistical features of the vortex length
distribution, or scaling laws in vortex size, and relating them with the
energy provided to the tangle per unit time and volume [7]. Our analysis
of the fractal dimension of the tangle goes along this way of research.

According to the two-fluid model of Tisza [8] and Landau [9], helium II
is composed of a normal component (a viscous classical fluid carrying the
whole entropy of helium II and having velocity vn and density ρn) and a
superfluid component (an inviscid fluid having velocity vs and density ρs),
such that the total density is ρ = ρn + ρs and the barycentric velocity is
ρv = ρsvs + ρnvn. In counterflow experiments, heat flux is carried away
from the heater to the helium bath by the normal component q = ρsTvn,
and the superfluid component counterflows in the opposite direction to
conserve the total mass. This mechanism implies a counterflow velocity
defined by Vns = vn − vs = q/(sTρs), s being the entropy density and
T temperature. In counterflow experiments the total energy supplied to
helium II is dissipated by viscous forces, or furnished to the vortex tangle
(as contribution to the vortex line formation and destruction) [10]. The
viscous dissipation is due essentially to the interaction between the quasi-
particles (phonons and rotons) that compose the normal component and
the vortex tangle.

Previous studies [1,11,12] argued that the vortex tangle has a fractal
structure because the net breaking process of bigger vortices into smaller
vortices does not depend on the size along the energy cascade, between the
extreme big and small scales [13]. In a previous paper [1] a geometrical
model of superfluid turbulence at very low temperature was proposed, with
a hierarchy of self-similar vortex loops whose behaviour mimics the features
of a cascade of Kelvin helical waves (Kelvin wave model), so relating the
fractal dimension of the vortex tangle to the amplitude and wavelength of
the Kelvin waves.

In this paper, following a Nemirovskii’s proposal [14], a model analogous
to the Kelvin wave model is presented: the random walk model. It describes
the geometry of the vortex tangle with a hierarchy of self-similar vortex
loops, where reconnections are faster than Kelvin wave propagation rate.
The random walk model is more realistic for higher values of L (L > 105

cm−2 see Table 1), and it shares the essential main results obtained in [1].
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Both models are then applied to the recent results on Kelvin-wave cascade,
and fractal dimension is related to the exponent of the potential law in the
wavenumbers K-space. Both models are simplified sketches (toy models) of
a much more complex reality, and they are aimed to explore an intuitive
grasp of this topic, rather than an exact description of it.

Furthermore, we use for the energy spectrum a recent proposal by
Sonin [15] from which previous results are recovered and clarified. We dis-
cuss the fractal dimension of the vortex tangle in terms of the exponents
describing how the vortex energy per unit length changes with the length
scales and the structure of the random walk loops. At the end of the paper
the applicability of both models at finite temperature is analyzed.

This paper is organized as follow: in Section 2 the random walk model
and the scaling laws are proposed and the results discussed, Section 3 is
devoted to energetic consideration on superfluid turbulence; and in Section 4
the main conclusions are summarized.

2. A self-similar random walk model.

Superfluid turbulence is characterized by a relevant amount of thin vor-
tex lines, which interact and connect one to each other. The spatial distri-
bution and the dynamical evolution of these vortices strongly depend on the
type of experiment. The counterflow experiments (heat flow without mass
flow) have been widely studied and their most appealing feature is the pres-
ence of an almost homogeneous and isotropic vortex tangle. The dynamics
of vortices inside the tangle is governed by the external heat flow and by
the presence of other vortices and by other parts of the same vortices [16].

The quantum vortex tangle can be described as an ensemble of chaotic
lines, whose evolution depends on two main ingredients: the motion of the
line elements, and the reconnections between them. The vortex motion
obeys the Biot-Savart law, supplemented by the mutual friction force, due
to the external counterflow [3–6,16].

An important feature in vortex dynamics is the possibility of vortex re-
connections: when two vortices approach closely they break and reconnect,
so modifying the topology of the vortex tangle [2,5,6,16]. Vortex reconnec-
tions randomize the vortex tangle and initiate the physical mechanisms of
the decay of the tangle in smaller and smaller loops. Another way to transfer
energy from larger scales to smaller ones is the Kelvin waves cascade.

How the supplied energy is dissipated depends also on the temperature.
When temperature is approximately zero, normal component is almost ab-
sent, as well as the viscous forces and the subsequent loss of energy due to
the interaction between normal component and vortices. The energy sup-
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plied to the largest scales (biggest loops) is then transferred to smaller scales
by reconnections and Kelvin waves (without kinetic energy loss) till the ul-
timate length scale, where sound emission appears, which according to the

Vinen’s analysis, is lmin '
(
κ3/ε

)1/4
, where ε is the energy communicated

to the system per unit volume and time, which is proportional to L2 [17]. In
this regime, one could expect the vortex tangle to exhibit fractal features, if
the mentioned processes act in a self-similar way on several orders of spatial
lengths.

As stated, the energy transfer from the largest scales to the smallest
scales is caused by reconnections among vortices and Kelvin waves, which
in some cases evolve in a wave cascade, a process in which the nonlin-
ear interaction between Kelvin waves triggers waves of shorter and shorter
wavelength. A similar phenomena is seen in fiber optics for the propagation
of optical pulses [18,19]. The model proposed in [1] assumes the vortex tan-
gle as made by helical vortex loops wrapped by coils (Kelvin waves) and
mimics the transfer of energy from larger to smaller loops (daughter loops)
by discrete steps. This model is valid when the time a Kelvin wave needs to
propagate (for some wavelengths) along the vortex is less than the time be-
tween two reconnections. Thus it is worth to compare (see Section 2.2) the
time of evolution of Kelvin waves (which depends on the wavenumber) and
the time between two consecutive reconnections. When reconnections are
faster than wave propagation, the model proposed in [1] is no longer valid,
and an alternative model has to be proposed: the random walk model.

Thus, we adopt a random walk model inspired by Nemirovskii [14]. We
assume that the average vortex loop consists of many arches, smoothly
connected to each other. Its structure is determined by many previous re-
connections. These arches are uncorrelated, because Kelvin waves do not
have the time to propagate far enough. Thus each loop has a random-walk
structure.

2.1. Description of the model: geometrical scaling laws and fractal dimen-
sion.

We assume that, due to the frequent breaking and reconnection pro-
cesses, the tangle may be described as an ensemble of self-similar objects [1].
We take as reference configuration a collection of N0 vortex loops of length
l0; each loop is formed by N ′0 small arches of length b0, connected randomly
but smoothly.

The next generation of smaller vortex loops is assumed to be composed
of N0r vortex loops, of length l0/β. Thus, the n-th generation is composed
of Nn = rnN0 vortex loops of length l0/β

n. Here, r and β must be posi-
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tive numbers higher than 1, whose value will depend on the details of the
dynamics.

At each step, the random walk structure of each loop is formed by N ′n
small arches of length bn, a process which mimics the results of successive
random reconnections. Besides a rule for the number Nn of loops in the
n-th generation and the total length ln of the loop, it is necessary to give
scaling rules for N ′n and bn, the number of small arches and their respective
lengths bn.

We assume then that each loop, at the n-th generation, has N ′n =
N ′0(r

′)n arches, and that the length of these arches is scaled as bn = b0/(β
′)n,

i.e. they might scale in a different proportion than the total length of the
loop. We introduce finally two scaling coefficients α and γ, putting r′ = rα

and β′ = βγ .
In Figure 1 a sketch of the vortex cascade is shown. The largest loop in

figure is one of the Nn loops at the n-th generation, and the smallest ones
refer to the daughters at n+1-th generation. According to our assumptions,
the largest loop has a mean radius Rn = l0/β

n, and it has N ′n arches of
length bn. Each arch represents a step of the random walk, and dots between
arches refer to reconnections just or previously happened.

Because we have assumed a self-similar structure in the vortex tangle, it
is possible that this structure leads to a fractal dimension of superfluid tur-
bulence, as it happens in classical turbulence [20–22]. Our aim is to model
the fractal dimension of the tangle, by separating the scaling behaviour of
vortex length and of vortex energy.

The main assumption of the model is that in the breaking and recon-
nection processes the energy at each loop generation remains unchanged
because at these length scales there is no friction neither sound radiation.
We will see in the following subsection the conditions of validity of this
hypothesis.

We will call Ein this amount of energy. Thus, we impose

(1) Einn = Einn+1 ⇒ NnE
′
n = Nn+1E

′
n+1

with E′n the energy of each loop at the n-th generation, whereas the total
length Ln = NnN

′
nbn may change with n. The underlying physical idea is

that the energetic contributions of very close parts of the vortex lines may
interfere with each other, thus leading to a nonlinear relation between the
energy and the length.

In [1] it was outlined an interesting relation between energy and fractal
dimension DF of vortices, which is over any particular model. It states
that: If E′n ∝ lα

′
n (α′ being a constant) and if the energy of the successive

generations of vortex loops of the tangle is constant, then α′ = DF .
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Figure 1. The self-similar vortex loop cascade: each loop of the n-th generation breaks
into several loops of the (n+1)-th generation, which are assumed similar to the respective
parent loop.

As a concrete illustration we consider an expression recently proposed
by Sonin [15] for the energy density distribution in terms of the wavevector
K in Kelvin-wave cascade, which is

(2) EKV ≈ Λ
ρκ2

δ20

(
εL2

0

ρκ3

) 1
2p−1

K
− 2p+1

2p−1 ,

where Λ is a logarithm factor, δ0 the intervortex spacing in the vortex
tangle, ε the supplied energy flux in the K-space, i.e. flowing from large
vortices to small vortices. In (2), p is a natural number expressing the
number of “Kelvons” — i.e. quasiparticles associated to Kelvin waves —
participating in the collision. Expression (2) comes from

(3) EKV ≈ Λρκ2LK2m(K),

with m(K) = |u(K)|2 the intensity of the Kelvin mode, where u(K) is
the Fourier component of the displacement expansion for the vortex line of
length L. Sonin proposed [15]

(4) m(K) ≈
(
εL2

0

ρκ3

) 1
2p−1

K
− 6p−1

2p−1 .
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For p = 3 one has Kozik and Svistunov proposal [23] m(K) ' K−17/5, and
for p = 2 one obtains that of L’vov et al.,m(K) ' K−11/3 [24]. Lively debate
has aroused about these expressions, because of the important conceptual
differences behind their derivations, despite the close numerical values of
the corresponding exponents in both expressions.

However, here we are interested in (2) as providing an explicit expression
for E(K) for the sake of a plausible illustration. Since K ∼ 1/l, and using
l ≡ bn we may rewrite (2) in the form

(5) E′n = Λ
ρκ2

δ20

(
εL2

0

ρκ3

) 1
2p−1

b
2p+1
2p−1
n N ′n.

Since the total number of vortex loops at the n-th generation is Nn, the
total energy stored on the vortex loops of the n-th generation will be

(6) Einn = NnE
′
n = Λ

ρκ2

δ20

(
εL2

0

ρκ3

) 1
2p−1

b
2p+1
2p−1
n N ′nNn.

In our scaling assumptions this may be rewritten as

(7) Einn = N0N
′
0b

2p+1
2p−1

0 Λ
ρκ2

δ20

(
εL2

0

ρκ3

) 1
2p−1 rn(α+1)

βnγ(2p+1)/(2p−1) .

Imposing the condition Einn = Einn+1 we obtain in the limit of high n, the

relation rα+1 = βγ(2p+1)/(2p−1).
The total length of vortex loops in the n-th generation will be

(8) Ln = NnN
′
nb
′
n = N0N

′
0b
′
0

rn(α+1)

βnγ
.

We are now in conditions to obtain the fractal dimension DF of the
vortex tangle. The usual definition of the fractal dimension DF is [13,20]

(9) DF = − lim
n→∞

log(Nn/N0)

log(ln/l0)
,

where Nn is the number of loops and ln = Ln/Nn the length of a loop. In
our case, Nn/N0 = rn and ln/l0 = N ′0r

αn/βγn. Substituting these values
in (9), and using the relation between r and β obtained from expression (7),
in the limit of high values of n it follows that

(10) DF =
2p+ 1

2p− 1− 2α
,
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which is higher than 1 for α < (2p − 1)/2. Then, if p = 3, it turns out
that DF = 7/(5 − 2α) and α < 2.5, and if p = 2, DF = 5/(3 − 2α) and
α < 1.5. Note that a plausible value for the fractal dimension of the tangle
is 1 ≤ DF ≤ 2. In this view we find out that 0 ≤ α ≤ 2p−3

4 , which requires
that p ≥ 3

2 . More in details, 1 ≤ DF ≤ 2 for 0 ≤ α ≤ 0.75 if p = 3, and
0 ≤ α ≤ 0.25 if p = 2.

We note that p by itself does not specify the geometrical fractal dimen-
sion of the tangle, but also the exponent α is needed. Recall (Section 2)
that our scaling with respect to the features of one vortex is based on expo-
nents β and α that are both positive coefficients; the former one is related
to the reduction in size of the small arches of the loop; the second one is
related to the increment of the number of arches in a loop. For instance, if
α = 1 the number of arches in a loop will increase as rn, i.e. at the same
rate that the number of loops in the tangle is assumed to increase with the
index n of “generation”, if α > 1 the number of arches increases faster,
if α < 1 the number of arches increases slower, and if α = 0 the number
of arches in each loop is always the same. The most plausible values of α
indeed are in the range (0, 1). This indicates that smaller loops (belonging
to higher values of n) are expected to have a higher number of arches, and
their number grows slower than the number of loops.

Now we can compare these results with the ones obtained by several
authors in [12,25,26]. In these papers the values of the fractal dimension
were found at different temperature and by means of different equations
(taking or not account of the friction through the normal component). The
range of values obtained numerically by these authors shows that the fractal
dimension is in the range [1.35, 1.75], which according to our results brings
to 0 ≤ α ≤ 0.5 if p = 3, and 0 ≤ α ≤ 0.07 if p = 2.

Assuming that the smaller loops (belonging to higher values of n) will
have a higher number of arches, (and their number grows slower than the
number of loops), the model with p = 3 seems closer to our results. However,
we cannot get definitive conclusions and exclude other possibilities.

2.2. Range of validity of the model.

The rate of reconnections depends strongly on the amount of vortices in
the tangle: it is expected that the number of reconnections per unit volume
is higher for high values of L. As noted in [14,27], in a fully developed vortex
tangle, because of very frequent breaking and reconnections, the vortex
loops (as a whole) do not live long enough to perform a true evolution
due to this deterministic motion. We also assume that turbulence is widely
developed in such a way that vortices pinned to the wall of the container
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can be neglected.
The rate of reconnections (at any temperature) is estimated as [14,27]:

(11)
dN

dt
' κL5/2,

where N is the number of reconnections per unit volume. It means that
the time interval between two consecutive reconnections per unit volume
is ∆t ' κ−1L−5/2. After a reconnection, two waves run along each vortex
line (in opposite direction one to each other, as in Figure 3 in [14]), but
Kelvin waves can be also triggered in the waves cascade, if it starts. The
propagation speed of Kelvin waves along a vortex line can be approximated
by vg ∝ K (K being the wave number) quite well for K < 500 cm−1 as
shown in Figure 3 of [28]. The time a Kelvin wave needs to run for a length
aλ (a being a constant of the order of unity and the wavelength λ = K−1)
is ∆t1 ' κ−1K−2.

According to these results, for low temperature the model proposed
in [1] is valid when ∆t1 < ∆t, namely for L5/2 < K2 or for K > K = L5/4.
This means that the model proposed in [1] can be applied in the whole or
to a confined range of wavelengths, settled by the threshold wavelength K.

According to the Vinen’s result [17], the ultimate length scale, below

which sound emission appears, is lmin ∝
(
κ3/ε

)1/4
, where ε is the energy

communicated to the system per unit volume and time, which is propor-
tional to L2; therefore one can assume lmin ' L−1/2. Therefore, the model
in [1] is valid for K < K < l−1min ' L1/2. The random walk model should
instead be valid for K < K down to the smallest scales, where the model
loose to be valid. To check whether there are situations at T = 0 in which
the random walk model can be applied, we have to require that the energy
cascade can reach the smallest scales which are bounded by the Vinen’s
value l−1min. This means that K > l−1min. For the relation (11) the answer is
affirmative and it happens for L > 103cm−2.

3. Energetic analysis of superfluid turbulence at finite tempera-
ture.

The above arguments refer to a vortex tangle at low temperatures, in
such a way that the normal component (and thus friction) can be neglected,
and the only dissipation occurs because of sound emission. Now we try to
extend our remarks to finite temperature, where the viscous effects cannot
be ignored.

At higher temperature the viscous component of helium II cannot be
underestimated, at least for small Reynolds numbers: part of the energy is
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lost because of viscous forces. The other part of the energy is consumed
in the vortex tangle: in the formation and destruction of vortices and in
the friction between vortices and quasi-particles of helium II. In the latter
case, friction deviates the trajectories of the vortex elements and causes the
decay of the amplitude of Kelvin waves, which are created by reconnections
(these waves propagate through the vortex lines transferring energy from
higher scales to smaller scales).

It is worth noting that in [10] it was found that the energy supplied
to the system (tangle) is split in pure friction and in vortex destruction
and formation. In more details, let the total power per unit volume P/V
delivered to the vortex tangle in a time ∆t in the superfluid reference frame
be

(12) Etan = (P/V )tangle ∆t =< vns · FMF > ∆t,

where vns is the microscopic counterflow velocity (the relative velocity of
normal component with respect to the superfluid component), FMF is the
microscopic mutual friction force, and < · > denotes the average in a meso-
scopic volume Λ. The total power is split in (see [10] for more details)

(13) E1 = (P/V )1 ∆t =< vL · FMF > ∆t = εV
dL

dt
∆t,

and
(14)
E2 = (P/V )2 ∆t =< (vns − vL)·FMF > ∆t = αρsκL < | (vns − vi)⊥ |

2 > ∆t,

where vL is the vortex line velocity, εV is the energy per unit length, α
is a friction coefficient, vi is the induced velocity and ⊥ stands for the
orthogonal component to the unit vector s′ (s′ being the derivative of the
generic position s with respect to the arc-length ξ).

Therefore, a part of the energy, (13), is used in formation and destruc-
tion of vortex line to self-maintain the vortex line length in steady state,
and the second part, (14), refers to an effective dissipation of the energy.
Therefore, the presence of the normal component might modify the conclu-
sions of the previous paragraphs, mainly because now energy cannot keep
constant at each step of the self-similar model. But, we claim that the self-
similar random walk model can be applied also at finite temperature after
the following assumptions:

- For high Reynolds numbers viscous forces can be neglected.

10
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- In the vortex tangle, energy is supplied to the largest scales and
transferred to the smaller scales by reconnections and Kelvin waves.
At finite temperature, part of the energy is lost in the attenuation
of the amplitude of Kelvin waves (because of normal fluid), which is
more evident at higher wave numbers [29]. To avoid this trouble, it is
sufficient assuming that Kelvin waves do not evolve for enough time
before a new reconnection happens. According to the estimations of
the above paragraphs, it would occur for K < K, but since we are
interested to consider also the small length scales, then K > l−1min
(which means L > 103cm−2).

- Moreover, according to equations (13) and (14), the energy supplied
to the system (free of any viscosity) is employed to self-maintain
vortex tangle because of formation and destruction (E1), and is lost
in the interaction between vortex and quasi particles (energy E2). In
steady state the exchange of energy E1 is null: indeed, the amount
delivered to the largest scales, Ein, is then radiated at smallest
scales, Eout, so we have E1 = Ein + Eout = 0.

At finite temperature, the expression of the energy Ein to use in our
models to calculate the fractal dimension of the ensemble of vortices is the
same used at low temperature in equation (1) and in the following ones.

Note that these conclusions are still valid after removing the first re-
striction of those we have just commented. The conclusions of this section
are summarized in Table 1.

Table 1. In this table an overview on the Kelvin wave model and the random
walk model is given in terms of the temperature T (see also Section 3 for finite
temperature), the vortex line density L, and the wavenumber of the Kelvin wave K.

The quantities K and l−1
min are defined by K = L5/4 l−1

min = L1/2.

Kelvin wave model Random-walk model

Low temperature K < K < l−1
min K > l−1

min or L >

103cm−2

High temperature No because normal fluid
damps out the Kelvin wave
amplitude

K > l−1
min or L > 103cm−2

4. Conclusions.

In summary, we have proposed a simple toy model which allows us to in-
terpret the fractal dimension of a vortex tangle in energetic and geometrical
terms.

At very small temperature and at not too small length scales, we claim

11
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that no dissipation occurs. In that limit we have found that E′n/ln ∝ lDF−1
n

(if smaller length scales contribute less to the energy than the large length
scales, then DF > 1). In a previous paper a toy model was proposed to
confirm this thesis [1].

According to the results of the last section, the toy model proposed
in [1] is applicable when vortex line density L is not too high, because
Kelvin waves must have the time to propagate. Otherwise a new model is
required. In this paper we have proposed simplified random walk models of
vortex tangle, which are more suitable and realistic for higher vortex line
densities. Our models can be also applied to finite temperature, after some
important restrictions: high Reynolds number, steady state and high value
of L (see the end of Section 3). The main difference between situations at
finite temperature and situations at T = 0 is the loss of energy: in the
latter almost all the energy supplied to the system is kept constant, from
the largest scales to the smallest scales, till the critical length is reached; in
the former it is not properly true.

In equation (10) we have expressed the fractal dimension DF in terms
of a characteristical dynamical exponent p — related to the number of
“Kelvons” participating in a reconnection process —, and a geometrical
exponent α. In fact, both exponents appear in the energy expression (6):
p appears in an explicit way and α appears implicitly through N ′n, which
refers to the number of arches of length bn which compose a single loop.
Thus, the size of the loops depends not only on bn but also on N ′n. Small
values of the N ′n will mean that there are many small loops of length bn; in
contrast, high values of N ′n mean that the characteristic elementary lengths
(or “arches”) are assembled in a small number of big loops of length N ′nbn.
We have shown that the fractal dimension in our model depends on α, and
the comparison with the results of the numerical simulations suggested that
the preferred model is that with p = 3 and 0 ≤ α ≤ 0.5.

In [1] we proposed the Kelvin wave model which, according to the results
of Section 2 and Section 4 (see also Table 1), is applicable at different tem-
perature and for L < 103 cm−2. In that paper we used different expressions
for the energy in “Large amplitude limit” and “Long wavelength limit” for
the Kelvin wave wrapping the vortex loop. By using the energy distribution
(2) recently proposed by Sonin, and assuming to consider Kelvin wave in
the “Large amplitude limit”, the expression (10) of the fractal dimension is
the same in the second model in [1].

Since the geometrical form for the loops is here rather different than
in [1], the fact that the relation between the fractal dimension and the
energy/length relation is the same shows that it is a considerably robust
feature of the tangle, as it is independent of the particular form assumed
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for the loops.
Moreover, results from numerical simulations and experiments confirm

and could give hints about the results achieved in this paper. In [12] nu-
merical experiments performed for low L and null normal component show
an increasing value of L over the time and a fractal dimension higher than
1. According to the results of [1] and the present paper (even if L is too
small), the two results are correlated: a growth of L reflects DF > 1. Also,
in [29] the dynamics of the high amount of vortex lines is influenced by the
presence of the normal component. A constant value of L means that the
fractal dimension should be 1, even because Kelvin waves are damped by
the normal component.

In the future, it would be interesting to relate this fractal dimension to
transport properties of the tangle; another topic for research would be how
this fractal dimension is modified in very narrow cylinders or pores, where
the interaction of the loops with the walls is frequent, or in rotating tangles,
where rotational effects could introduce a marked anisotropy between the
rotation direction and the radial directions.
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