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Abstract

The relationships among intermittency with fractal Waiting Time distribution, Contin-

uous Time Random Walk (CTRW) and the emergence of Fractional Calculus (FC) are

reviewed. The derivation, in the long-time limit, of Time Fractional Diffusion Equation

(TFDE) is shown and compared with the case of normal diffusion equation. Emphasis is

given to the underlying connections of CTRW with concepts and results from probability

theory and stochastic processes: conditional probabilities, the law of total probability,

Central and (Lévy) Generalized limit theorems, renewal theory. It is shown how the

emergence of a well-defined scaling rigorously emerges by imposing the invariance of the

probability distribution under a group of self-similarity transformations involving space

and time. The physical interpretation of some crucial mathematical passages is explained.

In particular, the physical meaning of self-similarity coupled with the long-time limit is

explained, having in mind a experimental point of view. Finally, the emergence of FC

in complexity is discussed and associated with the ubiquitous generation of short-time

transition events in the dynamics of complex systems. These renewal events are associ-

ated with the dynamical emergence (birth) and decay (death) of cooperative long-lived

structures, thus giving rise to a intermittent birth-death process of cooperation.
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1. Introduction

Even if Fractional Calculus (FC) has been known since the 19th century
(see, e.g., [1]), its role in several applied fields is gaining momentum only
in the last decades and is still a matter of debate. Some authors have been
claiming for many years the potential impact of FC in fields like biology and
human physiology (see recent reviews [2–4] and references therein). In more
recent years, applications have been found in brain imaging [5], modeling
of biological tissues [6]a, neuron modeling [8], signal processing [9], wave
dynamics and viscoelasticity [10–12].
The interest here is more on applications of FC that can be traced back
to complex systems, a particular topic involving different classical research
fields that is becoming a subject of interest in medicine and biology Here
we will adopt the point of view of statistical physics and we will discuss FC
and complexity in this framework. In particular, the application of FC in
statistical physics has been the subject of hundreds of papers since the

′
90,

with two main directions: the first one is referred to Fractional Brownian
Motion [13], while in the second one the basic model is given by the Contin-
uous Time Random Walk (CTRW) [14–17] (see also [18] for a review). We
will not consider here the first one, where long-range memory is modeled
directly in the single-trajectory dynamic equations. On the contrary, we
will focus on the second one, where the emergence of long-range memory is
more subtle.
As far as we know, Hilfer and co-workers [19,20] were the first to find a
rigorous derivation of a link between CTRW and FC, deriving the Time
Fractional Diffusion Equation (TFDE) from an uncoupled CTRW with a
Mittag-Leffler distribution of Waiting Times (WTs), i.e., the time duration
between two successive events occurring randomly in time. In this case,
the derivation of the fractional derivative is exact. However, the robustness
of FC in statistical physics derive from a fundamental theorem of prob-
ability theory, regarding the sum of independent random variables, i.e.,
the Lévy Generalized Limit Theorem (GLT) [21,22].b. Compte [23] firstly

a It is interesting to note that in this paper the author discuss, among others, an
application to the vestibulo-oculomotor neural system, citing the results of a pioneering
work by Anastasio [7], which is one of the first applications (and probably the first one)
of FC in biology.

b To understand the crucial role of this theorem, we note that the emergence of nor-
mal diffusion processes in standard statistical mechanics is an important consequence
of the Central Limit Theorem (CLT) that, as well known, is based on (i) independent
random variables, thus implying short memory and Markov property, and (ii) finite size
fluctuations (finite variance) whose addition determines the emergence of Gaussian prob-
ability density. On the contrary, non-standard statistical mechanics is associated with
(i) long-range time correlations and/or (ii) fluctuations with infinite variance. This last
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proved the emergence of Fractional Diffusion Equations (FDEs) by means
of semi-heuristic arguments applied to the Montroll-Weiss Master equation
in the Laplace-Fourier space [18], thus recognizing that FDEs emerge as
a general limiting description of all scale invariant diffusion processes, i.e,
from CTRWs with WT and/or jump power-law distributions. Compte’s
arguments were made rigorous and generalized by Mainardi and Gorenflo
through the concept of well-scaled transition (see, e.g., [24–26]).
Here the arguments of Compte-Mainardi-Gorenflo are reviewed and the re-
lationships with concepts from probability theory are underlined and made
clear. Similarly, some care is devoted to the physical interpretation of some
crucial mathematical passages and constrains and, in particular, the well-
scaled transition as long-time limit and the role of self-similarity. In Section
2 the case of normal diffusion is illustrated in order to make a comparison
with the anomalous case. In Section 3 a similar route is followed to derive
the TFDE from the uncoupled CTRW. Here the long-time limit, continuum
limit and self-similarity condition are discussed in some detail. Finally, in
Section 4 we give a brief discussion on the role of FC in complex systems.

2. From Markovian Random Walk to Normal Diffusion Equation

2.1. The Markovian Random Walk

The Markovian Random Walk (MRW) is a mesoscopic model for trans-
port and diffusion where the walker can move only at discrete time instants:
tn = n∆t, being ∆t the fixed time step of the Random Walk (RW).c For
simplicity only the one-dimensional case is considered here, but the results
are easily generalized to the multi-dimensional case.
Denoting the random jump variable at time tn with ξn and withXn = X(tn)
the position of the (diffusing) random walker, we have:

(1) Xn = Xn−1 + ξn ; i = 1, ..., n

so that the MRW problem can be reduced to that of a sum of random
variables: Xn = X0 + ξ1 + ... + ξn = X0 +

∑n
i=1 ξi. In particular, we as-

sume that ξi are independent identically distributed (i.i.d.) random vari-
ables, with Probability Density Function (PDF) p(s), defined by the rela-
tionship: Pr{s < ξi < s + ds} = p(s)dsd. The assumption of independent

condition allows a random walker to make extremely long jumps in a very short time,
thus determining long-range spatial correlations. In both cases, the ”long-range” behavior
is mathematically described by an asymptotic slow power-law decay in memory kernels,
space and time correlations, jump or WT probability distributions.

c Note that the statistical features of the diffusion process, such as variance growth
and scaling, depend only on jump distribution and correlations among jumps.

d The notation Pr{A} means the probability of the event A
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ξi is equivalent to the Markovianity of Xn , while the assumption of iden-
tical distributions can be associated with homogeneous conditions in time
and space. In fact, having identical distributions for the jump ξi means no
dependence on the index i and, consequently, no dependence on the time
at which the jump occurs neither on the position of the walker. Under the
homogeneity assumption, the CLT (Gaussian PDF) or the GLT (Lévy sta-
ble PDF) can be applied in a straightforward way, which one of the two
depending on having a finite or infinite variance [21]e.
In panel (a) of Fig. 1 a sketch of a MRW with dichotomous jumps ξi = ±1
is reported. In this case the walker can move on a lattice whose grid size
is 1. In the dichotomous case, the general rules of conditional probabilities

t0
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t3 t4 t5

t6

+1

−1

+1 +1 +1

−1−1

t0

t1

t2

t3

τ1 τ2 τ3
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(a) (b)

Figure 1. (a) MRW with fixed time steps. (b) CTRW with random times τ1 , τ2 ,...

allow to derive the following expression:

(2) Pn+1(j) = p+Pn(j − 1) + p−Pn(j + 1) =
∑
l=±1

p
l
Pn(j − l) ,

being Pn(j) = P (j, tn) = Pr{X(tn) = j} the probability of finding the
walker at position j and p± the probability of making a jump ±. The
generalization to jumps of every (discrete) size is given by the following
expression:

Pn+1(j) =
l=+∞∑
l=−∞

p
l
Pn(j − l) ;(3)

Pn+1(j)− Pn(j) =
l=+∞∑
l=−∞

[p(j − l→ j)Pn(j − l)− p(j → j + l)Pn(j)] ,(4)

where the second, more familiar,form is derived form the first one by sub-
tracting Pn−1(j) to both sides of Equation (3) and using the equalities:
p
l

= p(j − l → j) = p(j → j + l) (space homogeneity);
∑

l pl = 1 (normal-
ization). Equations (3-4) are the general forms of the (Markovian) Master

e Both CLT and GLT can be generalized to the general case of non-homogeneous
conditions [21,22].
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equation describing, in the homogeneous case, a random walker moving, at
fixed time steps, on a lattice with unitary (or discrete) grid size.
The Master Equation (3-4) is essentially an application of the law of total
probability. In this case, the complete set of (incompatible) events is given
by the set Z of positive and negative integer numbers: Ω(n+1) = Ω(n) = Z.
Then, let us recall the law of total probability:

(5) Pr{A} =
∑
l

Pr{A|Bl}Pr{Bl} ,

where Pr{A|Bl} is the conditional probability of the event A given the event
Bl and {Bl, l integer} a complete set of incompatible (disjoint) events, i.e.,
in formulas: ∪∞l=1Bl = Ω (completeness); Bj ∩Bk = ∅ when j 6= k (disjoint
events). In Equation (3) the conditional probabilities of Equation (5) are
given by:

A = {Xn+1 = j} ; Pr{A} = Pn+1(j) ,

Bl = {Xn = j − l} ; Pr{Bl} = Pn(j − l) ,
and it results:

(8) Pr{A|Bl} = Pr{Xn+1 = j|Xn = j − l} = p(j − l→ j) = p
l
.

Note that the general Master Equation (3) reduces to the dichotomous
Master Equation (2) by simply substituting the following conditions on the
conditional probabilities of Equation (8): (i) Pr{A|B±1) = p(j ∓ 1→ j} =
p± (ii) Pr{A|Bl} = 0; l 6= ±1 ⇒ p+ + p− = 1. When p+ = p− = 1/2 the
walker’s diffusion is symmetric with respect to the initial position and there
is no drift. On the contrary, when p+ 6= p−, a mean drift, proportional to
the difference |p+ − p−|, determine an average motion that is superposed
to the walker’s diffusion. However, the diffusion is still symmetric, but with
respect to the time-dependent average motion.

2.2. Long-time limit of the MRW: the normal diffusion equation

Let us limit ourselves to the dichotomous case, i.e., Equation (2) with
p± = 1/2, pl = for l 6= ±, without any mean drift. We recall that, in
Equation (2), the meaning of n is that of a time-step in units of the time
scale ∆t: Pn(j) = Pr{X(n ∆t) = j}. Then, a microscopic time scale ∆t
is already included in the RW. An analogous microscopic space scale can
be introduced by rescaling the grid size of the lattice from 1 to ∆x and
changing the interpretation of Pn(j) from the probability of finding the
walker, at time n∆t, in a grid point j to the probability of finding the
walker in an interval of width ∆x centered around x = j∆x:

(9) Pn(j) = Pr

{(
j − 1

2

)
∆x ≤ X(n∆t) <

(
j +

1

2

)
∆x

}
.

Now, let us re-write this equation in a continuous form:
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Pn(j) = Pr

{
x− ∆x

2
< X(t) < x+

∆x

2

}
=(10)

= F

(
x+

∆x

2
, t

)
− F

(
x− ∆x

2
, t

)
,

where x = j∆x, t = n∆t and F (x, t) is the cumulative function: F (x, t) =
Pr{X(t) < x}. The long-time limit is operatively defined by the need of
a laboratory time scale much greater than the microscopic one: t ' tn =
n∆t � ∆t, thus involving n � 1. Then, the microscopic scale ∆t can be
treated as an infinitesimal with respect to t. Let us now make a heuristic
reasoning proving that, as a consequence of the long time limit, also ∆x
can be treated as an infinitesimal with respect to x. In fact, the condition
n� 1 means that we observe the walker after it has done many jumps and,
consequently, a limit theorem for the sum of i.i.d. random variables can
be applied. Being dichotomous, the jump distribution has finite variance
(in particular, it is equal to 1), and the CLT can be appliedf . In formulas:
x = j∆x = X(n+m)−X(m)� ∆x for n� 1, thus also implying j � 1.
Then, in analogy with ∆t, also ∆x can be treated as an infinitesimal with
respect to x. Note that this heuristic proof could be made more rigorous
by using probabilistic arguments. As a consequence of the above reasoning
and assuming F (x, t) to be smooth, we can apply the Taylor’s expansion
formula to F (x, ·) up to the first order:

(12) Pn(j) =
F (x+ ∆x

2 , t)− F (x+ ∆x
2 , t)

∆x
∆x ' ρ(x, t)∆x ,

being ρ(x, t) = ∂F/∂x the PDF of the RW position at time t. By sub-
stituting Equation (12) in Equation (2) it is easy to see that ρ satisfies
an equation similar to that of Pn(j), but with the continuous variables
x, x+ ∆x, t, t+ ∆t instead of the discrete indices j, j + 1, n, n+ 1:

(13) ρ(x, t+ ∆t) = p+ρ(x−∆x, t) + p−ρ(x+ ∆x, t) .
f We recall a simplified version of the Central Limit Theorem:

Theorem 2.1 (Central Limit Theorem). Given n random variables ξi, i = 1, n with

the following properties: (i) ξi are i.i.d. random variables; (ii) 〈ξi〉 = 0; 〈ξ
2

i 〉 = σ2 <∞,

then, defined the normalized sum as: Sn =
ξ1+ξ2+...+ξn

σ n1/2 , we have the following result:

n→∞ ; Pr{Sn ≤ x} → G(x) ,

being G(x) a standard Gaussian probability distribution, with zero mean and unitary
variance.

From the above limit, it is clear that in the CLT the convergence is in distribution
(weak convergence). A consequence of this theorem is the relation: (Xn)2 ∼ σ2n, being

Xn = Snσn
1/2, which tells us that the distance increases with the discrete “time” n, in

both average and probability.
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As before, we can apply the Taylor’s formula and we can expand ρ(x, t)
up to the first order in ∆t and up to the third order in ∆x and −∆x.
Substituting into Equation (13) and making some algebraic passages and
dividing both terms by ∆t, we get:

(14)
∂ρ(x, t)

∂t
=

1

2

∂
2
ρ(x, t)

∂2x
· ∆x2

∆t
+O (∆t) +O

(
∆x4

∆t

)
,

where O(...) denotes the higher order error associated with the neglected
terms in the Taylor’s formula. The rigorous mathematical condition asso-
ciated with the asymptotic long-time limit is given, in this case, by the
continuum limit: ∆t→ 0, ∆x→ 0. As said above, from the physical point
of view, this condition is equivalent to investigate time and space scales
much greater than the microscopic scales ∆t and ∆x. This corresponds to
the long-time limit, defined mathematically as t → ∞, but actually given
by the regime t � ∆t. Note that, from the above heuristic proof exploit-
ing the CLT, the long-time limit implies also a limit in the space variable:
x � ∆x. In this limit, three different cases can occur, but only one case
generates a (normal) diffusion process:

(i) ∆x2
∆t → 0 : we get a trivial equation without any diffusion : ∂ρ

∂t = 0

(ii) ∆t
∆x2 → 0 : another trivial case without diffusion: ∂

2
ρ

∂2x
= 0

(iii) Normal Scaling:

(15)
∆x2

∆t
→ 2D = constant .

In the last case, we get the Normal Diffusion Equation (NDE):

(16)
∂

∂t
ρ(x, t) = D

∂
2

∂2x
ρ(x, t)

In summary, the normal scaling relationship, given by Equation (15), is
strictly associated with the CLT and is a necessary and sufficient condition
for the emergence of a (Gaussian) diffusive phenomena and the derivation
of the associated NDE. As we will explain later, the scaling constraint that
must be applied in the case of CTRW is different from the normal scaling,
but an anomalous scaling relationship is still necessary to get a well-defined
(anomalous) diffusion process in the long-time limit.

3. From the Continuous Time Random Walk to the Time Frac-
tional Diffusion Equation

The idea of CTRW originates in the first publications by Montroll and co-
workers during the ′50 and its consequences were intensively investigated
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by Montroll and other collaborators in the ′60g. Apparently, the idea is
very simple: instead of having fixed time steps, these are allowed to vary
in a random way according to some statistical distribution. Despite this
apparent simplicity, this idea is now recognized to have deep implications
in the statistical physics of complex systems. The physical interpretation lies
in the assumption that the macroscopic manifestation of the microscopic
dynamics is assumed to be described not only through the statistics of
spatial jumps, but also by means of the statistics of random temporal jumps
(i.e., the WTs). Some authors associate these temporal jumps with a kind
of internal time of the system under study. Moreover, the introduction of
randomness in the temporal dimension allows for a much richer stochastic
dynamics at the macroscopic scale. More recently, deep consequences of
having random WTs with fat tail distributions have been found also in the
ergodic properties of the system [30,31].

3.1. The uncoupled Continuous Time Random Walk

There are several, mathematically rigorous, definitions of the CTRW.
Limiting to the one dimensional (spatial) case, a typical approach is to
consider the CTRW as a two-dimensional stochastic process, with the par-
ticular feature that one of the two variables describes the temporal jumps.
Let us consider the stochastic vector (Xn , Tn) evolving in the discrete time
internal time n, where Tn has values in the positive real axis and Xn has
positive or negative discrete values. Then, we have:

(17)

{
Xn+1 = Xn + ξn+1 ; n = 0,∞
Tn+1 = Tn + τn+1 ; n = 0,∞ ,

being {τn}∞n=1 and {ξn}∞n=1 the sequences of WTs and space jumps, respec-
tively. The CTRW is then defined by the relationship:

(18) X(t) = Xn ; Tn−1 < t < Tn ; n = 1,∞ ,
g See, e.g., the four fundamental papers Random Walk on lattices I-IV published be-

tween 1964 and 1973, [14–17], where Montroll investigated the anomalous transport of
charged particles in a electrical conductor under the action of an electrical field, a condi-
tion where anomalous (non-linear) time evolution of the variance growth was observed.
The dynamical system driving the transport is modelled as a a sequence of potential
wells that can trap the charged particle for a time interval whose duration is random and
depends on a complex microscopic dynamics.
It is in these papers that Montroll introduces for the first time the assumption of renewal
WTs [27] with a slow power-law decay in the distribution (i.e., 〈τ〉 = ∞), which is
now referred to as fractal intermittency, and, using the formalism of the Montroll-Weiss
equation in the Laplace-Fourier space, is able to give analytical solutions for the CTRW
probability distribution and, consequently, for the mobility of the charged particles in the
conductor. Fundamental results on the modeling of conductivity in disordered media are
also given in Refs. [28,29].
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where T0 = 0. This equation defines a particular kind of subordination pro-
cess [32]. In general, the increments ξn and τn are assumed to be indepen-
denth. Under this assumption, the stochastic process in the two dimensions
(space,time), defined by Equation (17), is a Markovian process. Neverthe-
less, it is interesting to note that the subordinated process X(t) is typically
non-Markovian, with the important exception of Continuous Time Markov
Chains (CTMCs), also denoted as Compound Poisson Processes, where the
WT distribution and the auto-correlation are exponential functions, thus
denoting a short-memory process.

Now, we want to derive the fundamental equation of CTRW under the
following assumptions:

Assumption 1: the initial laboratory time t = 0 matches the oc-
currence of a critical event: T0 = 0 (No aging);
Assumption 2: i.i.d spatial jumps (spatial homogeneity and inde-
pendent jumps)
Assumption 3: i.i.d. WTs (time homogeneity and renewal WTs)
Assumption 4: Uncoupled WTs and spatial jumps (i.e., they are
independent from each other)i.

The spatial component Xn of Equation (17) is again described by the
Markovian Master equation given in Equation (3). The time component,
given by the sequence of event occurrence times {Tn}, is described in the
framework of renewal theory [27], whose main ingredient is given by the
WT distribution
(19)

Pr{τ < τn < τ+dτ} = ψ(τ)dτ ; Ψ(τ) = Pr{τn > τ} = 1−
∫ t

0
ψ(τ ′)dτ ′ ,

being ψ(τ) the PDF of the WTs (WT-PDF) and Ψ(τ) the Survival Prob-
ability Function (SPF) of the WTs (WT-SPF)j.
The n-th event occurrence time Tn is given by the sum of the first n random
WTs: Tn = τ1 + ... + τn . It is easy to see that the PDF of Tn is given by

h Note that the assumption of i.i.d. WTs is the condition defining the sequence
{Tn}∞n=1 to be a (homogeneous) renewal process [27], being Tn the occurrence times
of some critical events (e.g., neuron spiking, turbulence bursting).

i The application of CTRW is particularly powerful in the case of (i) uncoupled WTs
and jumps and (ii) renewal WTs. These conditions are satisfied in the majority of papers
devoted to CTRW applications. However, recent investigations are being devoted also to
the case of non-renewal WTs. Further, a classical example of coupled CTRW is the Lévy
Walk [33], where the spatial jumps are exactly proportional to the WTs.

j Note that, as a consequence of the renewal assumption, both ψ and Ψ do not
depend on the previous WT history and, as a consequence of time homogeneity, they do
not depend on the event index n, neither on the laboratory time t.

9
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the n-fold convolution of ψ(τ):

(20) Pr{τ < Tn < τ + dτ} = (ψ ∗ ... ∗ ψ)(τ)dτ = ψn∗(τ)dτ ,

where ∗ denotes the convolution operator and n∗ the n-fold convolutionk.
Note that the Laplace transforml of ψn∗ is given by the n-th power of the
Laplace transform of ψ: L[ψn∗(τ)](u) = ψn∗(u) = [ψ(u)]

n
.

Now, let us introduce the CTRW probability distribution, P (j, t) =
Pr{X(t) = j}, which is the analogous of Pn(j) for the MRWm. In order
to derive the evolution equation for the CTRW, we reduce the event B =
{X(t) = j} = { the system is found in j at time t} to a union of disjoint
events Bn(t) = {the system reachs j exactly at time Tn of the n− th event,
then it remains in j up to the next jump occurring at time Tn+1 > t}. In
formulas:

B(t) = {X(t) = j} =

∞⋃
n=0

Bn(t) ,(22)

Bn(t) = {X(Tn) = j, Tn+1 ≥ t} ,(23)

Bn(t) ∩Bm(t) = ∅ ; n 6= m .(24)

The events Bn are disjoint as, if the system jumps in j at the n− th event
and time t, it cannot jump in j at some different m− th event (at the same
time t). Further, each event Bn is the intersection (or product) of three
independent events:

(i) the n− th event occurs at a time 0 < t′ < t (Tn = t′);

(ii) the system jumps in j at the n− th event (Xn = j);

(iii) the system waits in j for a time t − t′ (we know that t − t′ < τ
n+1

as Tn+1 > t).

k The convolution operator is given by:

ψ2∗(τ) = (ψ ∗ ψ)(τ) =

∫ τ

0
ψ(s)ψ(τ − s)ds .

The n-fold convolution is defined iteratively by: ψn∗(τ) = (ψ ∗ ψ(n−1)∗)(τ)
l We recall the definition of Laplace transform of a function f(t) defined on the positive

real axis [0,∞]:

(21) L[f(t)](u) = f(u) =

∫ ∞
0

f(t)e−utdt

m In this definition, the variable is chosen to be integer, positive or negative. In general,
it is possible to have discrete values that are not integer, i.e., X(t) = jh, where h is the
lattice grid size.
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(25) Bn(t) = {Tn ∈ [t′, t′ + dt′]; 0 < t′ < t} ∩ {Xn = j} ∩ {τn+1 > t− t′} ,
and, passing to the probabilities of each event and using the postulates of
probability theory:

(26) Pr{Bn(t)} =

∫ t

0
Pr{Tn ∈ [t′, t′+dt′]} Pr{Xn = j} Pr{τn+1 > t−t′} ,

where

Pr{Tn ∈ [t′, t′ + dt′]} = ψn∗(t′)dt′ ;(27)

Pr{τn+1 > t− t′} = Ψ(t− t′) ;(28)

Pr{Xn = j} = Pn(j) .(29)

Taking the probability of both sides of Equation (22):

(30) P (j, t) = Pr{X(t) = j} = Pr

{ ∞⋃
n=0

Bn(t)

}
=
∞∑
n=0

Pr{Bn(t)}

and substituting Equations (26-29), we finally get the following result:

(31) P (j, t) =

∞∑
n=0

∫ t

0
dt′ψn∗(t′)Ψ(t− t′)Pn(j) .

This equation, together with Equation (3) for Pn(j), represent a particular
expression of the Montroll-Weiss Master equation for the CTRW under
the assumptions 1-4. It is possible to eliminate Pn(j) from Equation (31)
substituting Equation (3):

(32) P (j, t) = P0(j)Ψ(t) +
∞∑
n=1

(ψn∗ ∗Ψ) (t)
+∞∑
l=−∞

p(j − l) Pn−1(l) ,

where P0(j)Ψ(t) is the first term of the sum, i.e., for n = 0, P0(j) =
P (j, n = 0) is the initial condition. Note that the time integral has been
rewritten as a convolution. Substituting the change of variable: n′ = n −
1 into the previous equation, after some algebra it is easy to prove the
Montroll-Weiss Master equation in the following closed form for P (j, t):

(33) P (j, t) = P0(j)Ψ(t) +

∫ t

0
dt′ψ(t− t′)

+∞∑
l=−∞

p(j − l) P (l, t′) ,

It is often convenient to study the Montroll-Weiss equation in the Laplace-
Fourier space [18]. Let us define the structure function of the CTRW as the
(discrete) Fourier transform of the jump probability p(l):

(34) λ(k) = p̂(k) = F [p(l)](k) =
+M∑
l=−M

eiklp(l)

where i is the imaginary unit and k is a discrete or continuous variable
depending on the lattice dimension M , i.e., the total number of sites:

11
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- M < +∞: k = 2πj
M where j is a (positive or negative) integer number

- M = +∞: k ∈ [−π, π] .

In the following, we will consider implicitly the case of a infinite lattice
dimension: M = +∞. In time and space homogeneous conditions, Equa-
tion (33) is essentially a convolution in time and space. Applying the
Laplace-Fourier transform to this equationn, solving with respect to the

Laplace-Fourier transform P̂ (k, u) = F [L [P (x, t)] (x, u)] (k, u) and substi-
tuing Ψ(u) = (1− ψ(u))/u (from the properties of Laplace transform), we
finally get the Montroll-Weiss equation in the Laplace-Fourier space:

(35) P̂ (k, u) =
1− ψ(u)

u

P̂0(k)

1− ψ(u)λ(k)
.

The Green function is defined by the initial condition P0(j) = δj,0, being
δ the Kronecher symbol. This condition corresponds to all walkers starting
from the position X(t = 0) = 0. In this case, the Montroll-Weiss equation
is the same as Equation (35), but with P̂0(k) = 1.

3.2. Continuum limit, long-time limit, self-similarity and scaling

In analogy with Section (2.2), we define the rescaled probability for the
CTRW. To this goal, we introduce a grid size h of the lattice and we change
the interpretation of P (j, t) from the probability of being in the lattice site
j at time t to that of a interval of size h centered in xj = jh:

(36) j → xj = jh⇒ P (j, t) = Pr

{
X(t) ∈

[
xj −

h

2
, xj +

h

2

)}
.

The main difference with respect to Equation (9), defining the rescaled
distribution Pn(j) for the MRW, is that the time variable is continuous, so
that the long-time limit does not correspond to a continuum limit in time
and space, but only in space. However, it is possible to use the formalism of
self-similarity transformations [25] and, in analogy with Equation (10), we
rewrite P (j, t) in a continuous form by a formal (but heuristic) substitution
j → xj = x:

P (j, t) = Pr

{
X(t) ∈

[
x− ∆x

2
, x+

∆x

2

)}
=(37)

= F

(
x+

∆x

2
, t

)
− F

(
x− ∆x

2
, t

)
' ρ(x, t)∆x ,

n The Fourier (Laplace) transform of the convolution of two functions is the product
of the Fourier (Laplace) transforms of the two functions.
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where a (smooth) cumulative function F (x, t) and the corresponding PDF
ρ(x, t) = ∂F/∂x have been introduced also in this case. It is easy to see that
ρ(x, t) satisfies the Montroll-Weiss equation (33) by substituting Equation
(37), defining P0(t) = ρ0(t)∆x and eliminating ∆x from all the terms. In
this sense, ρ(x, t) is just an approximate probability density with discrete
values of x, even if written in a continuous form. However, it is possible to
make a more rigorous continuous form of the Montroll-Weiss equation by
considering the sum over l multiplied by ∆x as an approximation of the
integral over x, with the additional assumption of introducing a probability
density for the jumps: p(l)→ Pr{x0 → x0 + z; z ∈ [x, x+ ∆x)} = p(x)∆x,
where we used for simplicity the same symbol p for the discrete and con-
tinuous versions of the jump probability. Making the limit for ∆x → 0,
we get the following Montroll-Weiss Master equation for continuous jump
variables:

(38) ρ(x, t) = ρ0(t)Ψ(t) +

∫ t

0
dt′ψ(t− t′)

∫ +∞

−∞
dx′p(x− x′)ρ(x′, t′) ,

Now, in order to explain the emergence of scaling, it is convenient to use
the Montroll-Weiss equation in the Laplace-Fourier spaceo.
Firstly, we consider the group of self-similarity transformations:

(39) t′ = at ; x′ = bx .

Note that the parameter a and b are adimensional as they connect two
variables with the same physical dimensions.
Using these self-similarity transformations we give the following:

Definition 3.1 (Self-similarity). A stochastic process X(t) is said to be
self-similar if the following relations apply:

(40) X(at)
d
= bX(t) ; b = f(a) ,

where the equality
d
= is in terms of probability distribution. In this case,

the cumulative probability distribution F (x, t) = Pr{X(t) < x} is invariant
with respect to the group of transformations (39) and the relationship b =
f(a), is denoted as scaling relationship.

o The passage to the continuum in the Laplace-Fourier variables can be done similarly
to that made in (x,t). By substituting the (discrete) Laplace transform (or Fourier series)
of Equation (34) with its continuous version, and limiting to the case of a infinite lattice
(M → ∞), it is easy to see that the Montroll-Weiss equation identical to the same
equation for P (j, t), i.e., Equation (35):

ρ̂(k, t) = F [ρ](k) =

∫ +∞

−∞
dxeikxp(x) ⇒ ρ̂(k, u) =

1− ψ(u)

u

ρ̂0(k)

1− ψ(u)λ(k)
.
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Figure 2 gives a simple sketch of the idea underlying self-similarity applied
to a diffusion process: when the time scale is changed (t → at), then it
is possible to find the same values of the probability distribution F (x, t) if
suitably rescaled space intervals are considered: x→ bx, where b depends on
a, typically by means of a power-law relationship. Then, it is easy to see that

t

X

bX

a t

F

F
F invariant

Figure 2. Sketch of self-similarity in a diffusion process. The probability F (in the y-axis)
is mantained unchanged under the affine transformation: t→ at, x→ bx.

the following relationship applies to a self-similar cumulative probability
distribution:

(41) F (x, t) = F (bx, at) ,

which is the mathematical formulation of the invariance of the cumulative
distribution F (x, t)p. Notice that, in Equation (39), it is always possible
to put t′ = 1, so that we can substitute a = 1/t in the right-hand side
of Equation (41) and, thus, also in the scaling relationship that becomes:
b = f(1/t). Consequently, we find that the diffusion is actually described
by a single similarity variable z:

(42) z = xf

(
1

t

)
⇒ F (x, t) = F (z, 1) = g

(
xf

(
1

t

))
In the case of a unique time scale and a unique space scale, the dimensional
analysis imposes a power-law relationship of the kind:

(43) b = f(a) = aβ ,

which is also denoted as scaling relationship, so that z is also called scaling
variable. Notice that β is a fundamental parameter emerging as a meso-
(macro-)scopic manifestation of the microscopic dynamics.
As F (x, t) is assumed to be smooth, a similar relationship can be derived

p In fact, we have: Pr
{
X(at) < x′

}
= Pr

{
bX(t) < x′

}
= Pr

{
X(t) < x′

b

}
and, sub-

stituting x′ = bx we have: Pr {X(at) < bx} = Pr {X(t) < x} and, thus, Equation (41).

14
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for the PDF ρ(x, t)q and, by applying the joint Laplace-Fourier transform,
for the transformed function ρ̂ (k, u), thus finding the following results:

(44) ρ(x, t) = bρ (bx, at) ; ρ̂ (k, u) =
1

a
ρ̂

(
k

b
,
u

a

)
,

being the Fourier transform given by the continuous version, Equation (o).
We note that the limit a → ∞ and b → ∞ has two complementary inter-
pretations, even if apparently opposite to each other. In both cases, we can
consider x and t in Equation (39) as the microscopic space and time scales,
and x′ and t′ as the experimental space and time scales that are observed
in the laboratory. In the first interpretation, we take the variables (x′, t′)
fixed, so that the above limit corresponds to the limit x → 0 and t → 0,
which is is a mathematical condition imposing to the noise terms of both
jump and WT dynamics (i.e., the terms ξn and τn in Equation (17)) to
be asymptotically set to zero. In the second interpretation, actually corre-
sponding to the real physical interpretation, we consider the variables (x, t)
as fixed and the above limit corresponds to the long-time limit: x′ →∞ and
t′ → ∞. This interpretation is much closer to experimental reality, as the
microscopic dynamical scales of a real system are fixed and typically cannot
be changed, while the long-time experimental scales, at which the system is
observed, define the operational laboratory conditions and the instrumental
setup and tuning. In particular, this determines the constraint on the ex-
perimental sampling time, that must be much greater that the microscopic
time in order to observe a diffusive behavior with a well-defined scalingr.

q This can be done by differentiating both terms of Equation (41). Alternatively, it is
possible to derive ρ directly from its probabilistic meaning:
bρ(bx, at)∆x = Pr{X(at) ∈ [bx, bx+ b∆x)} = Pr{bX(t) ∈ [bx, bx+ b∆x)} =
= Pr{X(t) ∈ [x, x+ ∆x)} = ρ(x, t)∆x and, eliminating ∆x from both sides, we finally
get Equation (44).

r If the device performance would allow to obtain a high time resolution so as to reach
the microscopic time scales (or slightly above), it is clear that it will be necessary to
perform long-time averages in order to get a diffusive behavior. The recent advance in
the technical features of instrumentation is actually allowing to investigate the CTRW
model at the microscopic scales that are of some interest in biology (e.g., the cell level),
where some authors are finding very interesting results about the applicability of CTRW
model and, even more important, on its consequences on the ergodicity breaking found,
for example, at the level of cell internal dynamics (see, e.g., [30,31])
Finally, we note that a diffusive behavior can be observed if the size of the system is large
enough to allow for an intermediate range of temporal scales that are much greater than
the microscopic time scales and much smaller that the time the system takes to reach
the borders.
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3.3. The Time-Fractional Diffusion Equation as the long-time
limit of the uncoupled CTRW

Let us first consider the case of a finite first moment for the WT distribution:
〈τ〉 <∞. We have the following [21,22,34]:

Theorem 3.1 (Expansion for distributions with finite moments).
(i)
Given the Fourier trasform defined by Equation (34), if the first N mo-
ments of the jump distribution p(l) exist and have finite values, then it is
possible to write the following expansion:

(45) p̂(k) =

N∑
l=0

(ik)l

l!
〈ξl〉+O

(
kN+1

)
(ii)
Given the Laplace trasform defined by Equation (21), if the first N moments
of the WT distribution ψ(τ) exist and have finite values, then it is possible
to write the following expansion:

(46) ψ(u) =

N∑
l=0

(−u)l

l!
〈τ l〉+O

(
uN+1

)
Note that, in both cases, the expansion is valid up to N =∞ if all moments
exist and have finite values.

Then, we can consider the following approximations for jump and WT
statistical distributions:

k → 0
+

: λ(k) = p̂(k) ' 1− 〈ξ
2〉

2
k2 ,(47)

u→ 0
+

: ψ(u) ' 1− 〈τ〉u .(48)

Being the second moment finite, the first assumption is equivalent to assume
jump statistics in the Gaussian basin of attraction, while the effects of the
second assumption are clarified in the followings. To do this, we use the
Montroll-Weiss equation for ρ̂, Equation (o), but rescaled with a and b as
in Equation (44). In the limit a, b → ∞ we can substitute the previous
approximate expressions for λ(k/b) and ψ(u/a) and, after some algebra, we
get:

s However, we can notice that the exponential distribution satisfies this assumption.
Being the exponential distribution a fundamental feature of Continuous Time Markov
Chains, then, to our goal, this can be seen as a particular case of CTRW with expo-
nential WT distribution. Without going into details, it is possible to prove that, when
the WT-PDF is an exponential function, the Montroll-Weiss Master equation, Equation
(33), reduces exactly to a Markovian Master equation similar to Equation 4 but with a
continuous time derivative dP/dt instead of a discrete time difference Pn+1 − Pn.
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(49)
1

a
ρ̂

(
k

b
,
u

a

)
=

1

u+ 〈ξ2 〉
2〈τ〉

a

b2
k2 − 〈ξ

2 〉k2u
2b2

,

where, for simplicity, we considered the initial condition ρ0(x) = δ(x), defin-
ing the Green function of the problem and giving ρ̂0(k) = 1. In the self-
similarity assumption this expression must be equal to ρ̂ (k, u) (without a
and b). It is easy to see that this condition can be imposed in the asymptotic
limit a, b→∞. In fact, the last term in the denominator becomes negligible
and, in analogy with the observations made at the end of Subsection 2.2, a
non-trivial and diffusive solution exists if and only if we assume the normal
scaling:

(50) b
2

= a⇒ b = f(a) = a1/2 .

Under this assumption we get:

(51) ρ̂ (k, u) =
1

u+Dk2 ; D =
〈ξ2〉
2〈τ〉

,

which is exactly the Laplace-Fourier form of the NDE, Equation (16), for
the Green function, i.e., ρ(x, t = 0) = δ(x).
This result proves that, in order to get anomalous diffusion from the un-
coupled CTRW, it is necessary to admit a WT distribution with an infinite
average time, thus implying a very slow power-law decay in the range of
long WTs: ψ(τ) ∼ 1/τµ, 1 < µ ≤ 2t. In this case, instead of Theorem 3.1,
the following theorem applies [25,32]:

t This kind of WT distributions is expected to be ubiquitous as it belongs to the
basin of attraction of a one-sided Lévy stable density, as established by the following
theorem [21,22,34]:

Theorem 3.2 (Lévy Generalized Limit Theorem for one-sided distributions).
Let us consider n i.i.d. random variables: τi, i = 1, n, with values in the positive real axis.
Given the PDF ψ(τ) and the survival probability Ψ(τ) (see Equation (19)), let us assume
the following long-time behavior:

(52) τ →∞ : Ψ(τ) ∼ A

τµ−1
; 1 < µ ≤ 2 .

Then, defined the normalized sum as: Sn =
ξ
1
+ξ

2
+...+ξn
n1/α , where

(53) α = µ− 1

is the Lévy index restricted to the range 0 < α ≤ 1, we have the following result:

n→∞ ; Pr{Sn < x} → Gα(x) ,

being Gα(x) a one-sided Lévy density of index α.

This is a particular case, limited to one-sided distributions, of the GLT, which includes
distributions on the entire real axis, which can be symmetric or not, and with Lévy
index in the range 0 < α < 2 [21,22,34]. [35,36] Finally, we note that µ, denoted as
intermittency exponent or complexity index [37–39] is, similarly to the exponent β of
the scaling relationship (43), a emerging (meso-)macro-scopic property of the unknown
microscopic dynamics.
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Theorem 3.3 (Tauberian Lemma). For a WT-PDF with an asymp-
totic power-law decay ψ(τ) ∼ 1/τµ, 1 < µ ≤ 2, given the associated Survival
Probability Ψ(τ), the following statements are equivalent:

(i) τ →∞ : Ψ(τ) ∼ A
τµ−1 ; 1 < µ ≤ 2 .

(ii) u→ 0 : ψ(u) ∼ 1−Auµ−1 .

This is a particular case of a more general Tauberian Theorem relating
the limiting behavior of Laplace and Fourier transforms to the asymptotic
power-law behavior of statistical distributionsu.

Substituting this theorem, together with Equation (47) for the jump dis-
tribution, into the Montroll-Weiss Equation (o) in the rescaled version,
Equation (44), we get the following expression:

(55)
1

a
ρ̂

(
k

b
,
u

a

)
=

uµ−2

uµ−1 + 〈ξ2 〉
2A

a
µ−1

b2
k2 − 〈ξ

2 〉k2uµ−1

2b2

,

Similarly to the previous case, self-similarity, in the form of invariance of
Laplace-Fourier transform, can be applied in the long-time limit a, b→∞,
as the last term in the denominator becomes negligible also in this case. It
is then easy to see the emergence of the anomalous scaling relationship:

(56) b
2

= aα ⇒ b = f(a) = aα/2 ; z = xf

(
1

t

)
=

x

tα/2
;α = µ− 1 ,

where also the similarity variable z has been reported. Then, the long-time
limit non-trivial solution for the Montroll-Weiss equation in the Laplace-
Fourier space is given by:

(57) ρ̂ (k, u) =
uα−1

uα +Dαk
2 ; Dα =

〈ξ2〉
2A

=
〈ξ2〉
2T α

,

where the Lévy index α has been used instead of the intermittency exponent
µ. In general, we can rewrite the previous expression:

(58) uαρ̂ (k, u)− uα−1ρ̂0(k) = −Dαk
2
ρ̂ (k, u) ,

where ρ̂0(k) = ρ̂(k, t = 0) = 1 and, using the properties of Laplace trans-
form of Caputo fractional derivative operatorsv, we finally derive the fol-

u Notice that the constant A is related to a time scale through the dimensional rela-

tionship: A = T
µ−1

.
v The fractional derivative in the Caputo sense is given by (see, e.g., [40]):

(59)
∂α

∂tα
f(t) =

1

Γ(n− α)

∫ t

0
dt′

f (n)(t′)

(t− t′)α+1−n , n− 1 ≤ α < n ,

being f (n) the n-th order time derivative of the function f(t). The Laplace transform is
given by:

(60) L[Dαt f(t)](u) = uαL[f(t)](u)−
n−1∑
k=0

f (k)(0+)uα−1−k

.
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lowing TFDE [26]w:

(61)
∂α

∂tα
ρ(x, t) = Dα

∂
2

∂x2 ρ(x, t)

Mainardi, Gorenflo and co-workers gave important contributions in finding
both analytical solutions and numerical algorithms for the above TFDE
(see, e.g., [40,41]), and also in clarifying some mathematical aspects related
to a rigorous derivation of fractional diffusion equations from both MRW
(Space Fractional DE) and CTRW (Space-Time Fractional DE), adopting
a technique that they called well-scaled transition. These aspects have been
discussed here in order to explain the relationships with the concepts of self-
similarity and scale invariance. In particular, we underlined how the scaling
relationship emerges, for given jump and WT statistics, as a necessary
condition for the existence of a non-trivial, diffusive, solution. Among other
contributions, we cite Refs. [42,43], where the fundamental solutions of the
TFDE are given in terms of the Mainardi’s function:

(62) Mν(z) =

∞∑
n=0

(−z)n

n!Γ(−νn+ (1− ν))
=

1

π

∞∑
n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn) .

In particular, the solution to the Cauchy problem for the Green function,
i.e., with initial condition: ρ(x, t = 0) = δ(x), is given by:

(63) ρG(x, t) =
1

2
√
Dαtα/2

Mα/2(|z|)

where the subscript G refers to Green and z is the similarity variable given
in Equation (56).

4. Discussion: On the role of fractional calculus in complexity

In statistical physics, the transition from the MRW to the CTRW with a
slow power-law decay in asymptotic WT statistics corresponds to a passage
from the CLT to the Lévy Generalized Limit Theorem. In the first case, only
PDFs belonging to the Gaussian basin of attraction are considered, which
limits us to consider a noise term with independent increments and finite
variance jumps. The failure of the finite variance hypothesis determines
the emergence of super-diffusion driven by so-called Lévy flights and, in
the long-time limit, of (Riesz-Feller) space fractional derivatives [40]. This
is always in agreement with the general Markovian Master Equation (3),
but with the assumption of an infinite variance for the jump distribution.
To get this, a slow power-law decay must be assumed: pl ∼ 1

l1+α
; 0 <

α < 2, thus implying pl to belong to the basin of attraction of a Lévy stable

w The Normal Diffusion Equation is recovered for µ = 2 (α = 1).
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density of order α. This can be summarized in a simplified conceptual chain:
infinite variance→ power-law (scale invariant) jump distribution→ power-
law space kernel (non-locality)→ (Riesz-Feller) space fractional derivative.
However, the emergence of TFDE is, in some sense, more interesting, at
least from the point of view of complexity and this is related to the under-
lyng renewal process describing a sequence of critical events [27]. Complex
systems are characterized by some specific features that are commonly ac-
cepted in the scientific community as peculiar properties of complexityx.
Among others, the main feature, probably the unique one to be univer-
sally accepted, is the concept of emergence of cooperative behaviour and
self-organized structures. These emergent properties cannot be explained
only in terms of the single components (non-reducibility). Moreover, it is
found that emergent cooperative structures are not equilibrium states, but
metastable states. A crucial aspect for the application of CTRW and, then,
for the emergence of FC, is the typical intermittent behavior of these struc-
tures, that is, an alternance between (i) long life-times in which a global
structure emerges showing some level of coherence, in the sense that is can
be clearly identified (e.g., a quasi-stable large-scale vortex in turbulence)
and (ii) short-time critical events, erasing memory of the past (i.e., renewal
condition [27]) and associated with the emergence (birth) and decay (death)
of coherent, self-organized structures or states. In fact, in many complex sys-
tems, ranging from earthquakes to Blinking Quantum Dots, turbulence and
brain dynamics [37–39,44–48], there’s an experimental evidence of power-
law behavior emerging in the statistics of WTs, where WTs are defined as
the time intervals between two successive critical events. These are, in turn,
defined as bursting events in the time series, i.e., as rapid transitions (see,
e.g., brain dynamics [37–39]) marked by abrupt changes in the derivative of
the signal [49]. The interesting case, given by power-law WT statistics, is
denoted as fractal intermittency. The definition of complex systems in terms
of self-organized structures that are not stable, but evolve according to some
fractal intermittent birth-death process of cooperation is still a matter of
discussion in the scientific community. In fact, it is largely accepted that the
signatures of complexity should be some power-law behavior in the topolog-
ical structure of the system (e.g., degree distribution in a complex network),
in the spatial correlations (e.g., critical phenomena) and in the event in-
tensity (e.g., avalanche size distribution in a Self-Organized System) [50],

x Similarly to the case of turbulence, a precise and unique definition of complexity
is still a matter of debate and, up to our knowledge, there are no definitions that are
accepted by overall scientific community. However, as in turbulence, it is possible to
make a list of features that are recognized as general properties of complex systems by
the most part of the scientific community.
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all conditions that can be referred as structural or spatial complexity. On
the contrary, the investigations on the so-called Temporal Complexity [51],
typically emerging in complex systems in the form of fractal intermittency,
are still at the beginning. This seems to be a fruitful research direction as,
being anomalous diffusion a signature of complexity and being, in turn,
anomalous diffusion related to fractal intermittency through CTRW, tem-
poral complexity should play some central role.

Finally, we notice that the interpretation of critical events in terms of
(fast) birth-death transition events among metastable, long-lived coopera-
tive or self-organized structures, is something more than a simple conjec-
ture, as it has been recently confirmed by some theoretical investigations on
simple stochastic systems interconnected through simple or complex net-
works [52].
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In this paper I reviewed some results that can be found in papers published
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60s [14–17] and in more recent

papers by Mainardi, Gorenflo and co-workers [25,26,40–43]). In particular,
I gave a detailed explanation of the mathematical derivation of CTRW
(MRW) from fundamental ideas of probability theory and of TFDE (NDE)
from CTRW (MRW), also discussing the corresponding physical interpre-
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self-similarity and the need for the emergence of a scaling relationship has
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sion of Prof. Mainardi and discussed during the 1997 summer session. The
greatest part of this paper is a revised version of the second chapter, dedi-
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some subtle points, such as self-similarity and long-time limit. Other parts
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