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Abstract

Dynamics of growing or actively deforming tissues in biological systems cannot be

understood without taking mechanical interactions into account. In this work, we propose

a new multiscale approach for modelling growing tissues using analytical up-scaling tech-

niques originally developed for crystals. Adopting this approach corresponding macro-

scopic continuum models can be derived on the basis of the microscopic models (in-

dividual based models). Assuming isotropy these macroscopic models based on energy

functionals can be formulated in the framework of multiple natural configurations often

used in modelling growing tissues. In the case of anisotropic growth our ansatz shows

that constitutive relations depending only on mechanical deformations, as in the case of

isotropic growth, are not sufficient. They depend also on the growth itself. The explicit

form of the dependence can be recovered via homogenisation formulae inheriting most

details of the microscopic models. This new concept of a multiscale modelling approach

unifying individual based and sub-cellular element models with continuum models of-

fers an new perspective for mathematical modelling and simulation in many biological

systems.
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configurations.
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1. Introduction.

The generation and organisation of multi-cellular tissues is one of the
most fundamental questions in biology. Properties of biological tissues are
determined by complex interactions between biomechanical and biochemi-
cal processes on multiple temporal and spatial scales: ranging from ∼ 10−9s
and ∼ 10−9m for molecular processes to ∼ 107s and ∼ 1m for the develop-
ment of organisms [1]. Due to their complexity developmental mechanisms
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leading to the generation of form in multi-cellular tissues can hardly be un-
derstood by in vivo or in vitro experiments alone. Mathematical modelling
is an extremely useful tool to deal with this curse of complexity.

Depending on the temporal and spatial scales of interest different ap-
proaches to multi-cellular tissues can be found in the literature (cf.Fig.
1): These range from sub-cellular element models (e.g. [1,2]; modelling
sub-cellular elements interacting through phenomenological potentials) and
single-cell-based models (e.g. [3–6]; modelling cells as single deformable
polygons or ellipsoids) to continuum models (e.g. [7–15]; considering lo-
cal densities of cells). On the one hand, processes on sub-cellular or cellular
scales play a crucial role in determining the observed phenomena leading to
a preference of microscopic models based on first principles. On the other
hand, one is interested in phenomena typically involving hundreds or thou-
sands of cells, indicating a preference for continuum models requiring less
computational effort. Since macroscopic models are typically of a heuris-
tic type, one of the central challenges in mathematical approaches is how
macroscopic models might be linked with microscopic models or even rig-
orously derived from microscopic models.

Fig. 1. Length scales and corresponding models with their degree of freedom in mor-
phogenesis (courtesy to T. Newman, Arizona State University)

Based on a cellular automaton approach, [16] has derived a macro-
scopic description of growing cell cultures in the framework of reaction-
diffusion systems by computational means. Comparing computations of
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reaction-diffusion equations and off-lattice cellular automata models func-
tional dependencies of the continuous reaction-diffusion systems have been
determined. The approach indicates how macroscopic approaches to tissues
can be guided by microscopic models. However, the approach makes quite
strong a priori assumptions on the macroscopic continuum model: a priori
it is assumed that it is of a reaction-diffusion type. Rigorous derivations of
macroscopic models based on microscopic models would offer the chance
to obtain appropriate continuum models avoiding strong a priori assump-
tions. Recently [17–19] have proposed rigorous multiscale frameworks for
elastic materials. Based on discrete atomistic interactions constitutive re-
lations are derived. Using homogenisation formulae macroscopic properties
can be directly linked to microscopic properties. Extending this approach
for “passive” materials to biological “active” materials, e.g. growing tissues,
seems to be highly promising with respect to modelling mechanobiological
phenomena.

In this work, we show how the rigorous approach of [17] could be ex-
tended to active biological materials. That is, we show how to derive con-
tinuum macroscopic active material laws on the basis of a well studied
microscopic description. To do so, we restrict us to a relative simple 2D
microscopic model for epithelial mono layers considering single cells as de-
formable polygons. The model, given in terms of energy functionals, is re-
lated to a large number of discrete models [1–6]. For this model, we then
derive an appropriate macroscopic model under the assumption of a time
scale separation between “passive” and “active” behaviour. The derivation
is based on the results of [17] using the concept of Γ-convergence. Like the
microscopic model also the macroscopic model is based on a description via
energy functionals. Using variational calculus corresponding elastic contin-
uum mechanical models can be derived. Considering isotropic growth, the
results agree perfectly with the so called notion of multiple natural config-
urations [7,20]. In the case of anisotropic growth the results indicate that
the consideration of remodelling, i.e. the evolution of material properties,
is important. The constitutive relations have to depend additionally on the
growth tensor. A fact commonly ignored in most approaches based on the
notion of multiple natural configurations.

2. A discrete cell based model.

Discrete microscopic models are a popular theoretical approach to grow-
ing tissues. Cells are typically modelled as deformable quasi-spherical parti-
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cles (e.g. [3]), deformable ellipsoids (e.g. [6]), or polygons (e.g. [5]). Mechan-
ical interactions are encoded using energy functionals. Thus, neglecting any
dynamics, the stationary shape or deformation of a cell culture at any time
is given by the corresponding energy minimum. In the following, we con-
sider a simplified 2D model. Most other discrete models (e.g. [1–6]) could be
formulated in a similar way. An extension of the approach to 3D is straight
forward.

2.1. The discrete model

Model 2.1. Let us consider a discrete cell culture in Ω, as shown in Fig.
2, where ε is the typical length scale of a cell. For any given time t the
quasi-stationary shape / deformation of the culture minimises the discrete
free energy

Eε(t) =
∑

i∈cells

Vi(t)
(

Eperimeter(i; t) +
∑

j∈links

Elink(i, j; t)
)

,

where Vi(t) is the volume of cell i in the undeformed state. The ener-
gies Eperimeter(t) and Elink(t) model cytoskeletal tension on the surface and
within the cell. The energies depend on the position of the cell centres and
vertices of the polygonal cells.

The scaling with the undeformed volume Vi(t) of the ith cell at time t is the
natural scaling: the energy is stored in the whole cell. If a cell is growing, we
do not expect the energy density of the cell to decrease. For simplicity we
assume that the energies Eperimeter and Elink are of the following quadratic
form:

Eperimeter(Pi(t), Pi(t)) = κP

(Pi(t)

Pi(t)
− 1
)2

,(1)

Elink(Li,j(t), Li,j(t)) = κL

(Li,j(t)

Li,j(t)
− 1
)2

,(2)

depending on cell perimeters Pi(t) and link lengths Li,j(t) in the deformed
configuration as well as on the same quantities in the relaxed / undeformed
state Pi(t), Li,j(t). κP and κL are the corresponding mechanical moduli.
Growth is included in Model 2.1 via the time dependence of the parameters
Pi(t) and Li,j(t), and Vi(t) (cf. Section 2.2). Model 2.1 can also be extended
to include volume compressibility of the cytosol explicitly. However, from a
mathematical point of view the contributions of volume compressibility is
rather less interesting since it is a purely isotropic contribution.
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Fig. 2. Illustration of the geometric setup used in the microscopic discrete Model 2.1.
The initial configuration of a culture is shown, where ε is the order of the cell size. Roman
indices denote cell centres and Greek indices denote the vertices of the polygonal cells.

The basic variables describing cell perimeters Pi(t) and link lengths
Li,j(t) can be expressed in terms of the position of the cell centres xi, the
vertices of the underlying network, after deformation for all times t:

x(t) ≡ χε(t) : R2 ∋ X 7→ χε(X; t) ∈ R
2,

which are the “natural” degrees of freedom of Model 2.1. (Since we are in-
terested in mechanics, we will restrict ourselves to deformations preserving
the orientation.) The superscript ε indicates that we are working on a dis-
crete lattice. That is, we are only interested in the values of χε at discrete
points.

Let us make the relation between Pi(t) and the deformation χ more
precise (cf. also Fig. 2). In the following Roman indices will denote cell
centres and Greek indices will denote vertices of the polygonal cells, i.e. the
points where three cells touch each other. For each cell i this set of points
will be denoted T ε

i . Considering the initial configuration, ξi,j denotes the
vector (of length L0

i,j) connecting two cell centres. It is the natural vector

of the underlying network. ζi,α (of length L0
i,α) is the vector connecting the

cell centre with one of the points in T ε
i . (The vector ζi,α can be decomposed

by a combination of the vectors ζi,j and ζi,k with i and k appropriately,
i.e. ζi,α = (ξi,j +ξi,k)/3). ζα,β is the vector (of length L0

α,β) connecting two
neighbouring points in T ε

i . (The vector ζα,β can be decomposed by a com-
bination of the vectors ζi,α and ζi,β, i.e. ζα,β = −ζi,α+ ζi,β). Furthermore,
Vi,β,γ denotes the triangular area spanned by i, β and γ in the undeformed
configuration.
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Considering the deformed configuration, it holds (caligraphic quantities
are measured after the deformation)

Li,j(t) ≡ Li,j(χ(t)) =
|χ(Xi + ξi,j; t)− χ(Xi; t)|

|ξi,j|
L0
i,j

= |Dξi,jχ(X i; t)|L
0
i,j ,

(3)

Li,α(χ(t)) and Lα,β(χ(t)) similar. HereDξχ(X) ≡ (χ(X + ξ)− χ(X))/|ξ|
is the discrete finite difference quotients in direction of the vector ξ. Using
these relations Pi(t) can be formulated similarly in terms of vertex defor-
mations:

Pi(t) ≡ Pi(χ(t)) =
∑

α∈T ε
i

Lα,α+1(χ(t)).

The perimeter Pi in the undeformed configuration is defined analogously.
For Vi it holds Vi(t) =

∑

α∈T ε
i
Vi,α,α+1(t). Thus Model 2.1 is formulated in

terms of lengths Li,j and Lα,α+1, which itself can be formulated in terms
of the deformation χ.

Although Model 2.1 holds for any kind of geometry, we will restrict us in
the following for mathematical reasons (cf. Section 3) to a purely hexagonal
culture as shown in Fig. 2. In general, this is obviously not true, however
many tissues exhibit patterns close to a perfect hexagonal structure [21].
Cells are packed in the most efficient way.

Equation (3) as well as Li,j, Pi and Vi depend on finite differences Dξ

of the deformation of vertices of the underlying network. In a mechanical
framework the use of deformation gradients Fε (commonly used in contin-
uum mechanics) is rather natural and thus preferable. It holds

(4) Dξχ(X; t) = Fε ·
ξ

|ξ|

with the deformation tensor

Fε(X; t) = ∇Xχ.

Here, ∇X is the gradient with respect to the initial configuration, i.e. the
Lagrangian coordinate system. Again, the superscript ε indicates that we
work within a discrete setup.

2.2. Biological growth

In many biologically relevant cases growth is spatially varying and some-
times even anisotropic. Typically, growth takes place on time scales of sev-
eral minutes, whereas mechanical relaxation / mechanical interactions take
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place on much faster time scales. Thus, one typically assumes that with
respect to mechanics biological tissues are in a quasi steady state on time
scales relevant for growth. That is, we can introduce growth in Model 2.1
by assuming that Vi(t), Pi(t) as well as Li,j(t) (respectively the correspond-
ing vectors ξi,j) are time dependent variables, whose evolution is directly
determined by growth.

In microscopic discrete models, cells grow and once they are sufficiently
large cell division is initiated. Cell division will be omitted in our approach,
i.e. the topology is constant and does not change due to growth. Omit-
ting cell division is a major assumption. However, starting with a perfectly
hexagonal cell culture, cell division would imply a non-perfect symmetry.
This in turn, would anticipate the mathematical techniques introduced in
Section 3.

2.3. The discrete notion of multiple natural configurations

The notion of multiple natural configurations is a concept introduced
for continuum mechanical systems with evolving rest configurations. It has
been originally introduced for problems in thermo-elasticity and elasto-
plasticity (for a review see e.g. [20]). As a description of biological growth
it has been first applied by [7] and since then used in many theoretical
approaches to growing tissues, e.g. [8–15].

Fig. 3. The multiplicative decomposition of the deformation gradient Fε = F
ε,mech

·G

The main idea is to decompose the deformation tensor Fε ∈ R
2×2 into
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two consecutive deformations (cf. Fig. 3):

Fε = Fε,mech ·G.

Fmech ∈ R
2×2 is the deformation tensor due to mechanics. The tensor

G(X; t) ∈ R
2×2, which is assumed to be invertible, is a map from a ref-

erence state, e.g. the initial force-free configuration, to the current natural
force-free configuration. The tensor G can be directly related to growth, i.e.
we assume that growth can be modelled locally as a linear map. Growth
is completely determined by specifying the two main axes of growth and
the corresponding growth rates, i.e. the two eigenvectors and correspond-
ing eigenvalues of G. The specific form and evolution of the tensor G has
to be modelled. The growth rate, e.g. obtained by a complex network of
biochemical control pathways, determines only one of the invariants of the
growth tensor, namely JG = detG. All other components have to be pre-
dicted using available biological knowledge.

As outlined in Section 2.1, the key ingredients of the model are the
lengths Li,j(t) and Lα,α+1(t) as well as Li,j(t), Lα,α+1(t), and Vi,α,α+1(t),
respectively the corresponding vectors ξi,j . Let us assume that the vec-
tor ξi,j in the initial force-free configuration is affected by growth in the
following way, i.e. it has the following form in the grown configuration:

(5) ξ̂i,j(t) = G(X ; t) · ξi,j

and ζ̂i,α(t), ζ̂α,β(t) similar. Hence, we find

Li,j(t) = |G(X ; t) · ξi,j |,(6)

Vi,α,α+1(t) = JG(X; t)Vi,α,α+1(0) ≡ det (G(X ; t))Vi,α,α+1(0),(7)

and Lα,α+1(t) similar. The approach implies that growth of the single com-
ponents is not completely independent, it is only independent along or-
thogonal directions. This is a realistic biological assumption. Otherwise
growth of a single cell outside any culture would imply the generation of
pre-stress [22], which is typically not a phenomenon due to growth but
rather an intrinsic property of cells and should be conserved under growth.

Energies (1)-(2) depend on relative deformations, thus growth solely
enters the model by affecting the relative deformations. Using the notion of
the growth tensor (5)-(7) we find for the direct links

(8)
Li,j(t)

2

Li,j(t)2
=

(Fε(t) · ξi,j)
T · (Fε(t) · ξi,j)

|(G(t) · ξi,j)|2
,
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Lα,α+1 and Lα,α+1 analogous, as well as Pi(t)/Pi(t) (which is simply com-
posed of lengths). To compare the framework of multiple natural config-
urations in a discrete and continuous setting let us assume for simplicity
that growth is overall constant, i.e. G is independent of X. The construc-
tion of G ensures that G is invertible, thus we find for (8) dropping t for
convenience:

Pi

Pi
=

∑

α∈T ε
i

[

(G · ξα,α+1)
T · (Fε ·G−1)T · (Fε ·G−1) · (G · ξα,α+1)

]1/2

∑

α∈T ε
i
|G · ξα,α+1|

,

L2
i,j

L2
i,j

=
(G · ξi,j)

T

|G · ξi,j|
· (Fε ·G−1)T · (Fε ·G−1) ·

(G · ξi,j)

|G · ξi,j|
.

2.3.1. Isotropic growth

In the case of isotropic growth, i.e. G = γI, the relations above can be
simplified significantly:

Pi

Pi
=

∑

α∈T ε
i
(ξα,α+1)

T · (Fε ·G−1)T · (Fε ·G−1) · (ξα,α+1)

Pi(0)
,

L2
i,j

L2
i,j

=
ξTi,j

|ξi,j|
· (Fε ·G−1)T · (Fε ·G−1) ·

ξi,j

|ξi,j|
.

Thus, mechanical energy densities per mass/volume Eε(t)/V (t) =
Eε(t)/(V (0) ·JG(t)) with JG(t) = detG = V (t)/V (0) in Model 2.1 depend
solely on the mechanical deformation tensor Fε,mech = Fε ·G−1 = 1

γF
ε and

not on the ”true” deformation tensor Fε. In the case of isotropic growth,
we find a perfect agreement with the so-called notion of multiple natural
configurations [20].

2.3.2. Anisotropic growth

Considering anisotropic growth Model 2.1 differs significantly from typ-
ical approaches in the framework of multiple natural configurations [20]:
Rewriting relation (8) in terms of mechanical deformations Fε,mech =
Fε ·G−1, we obtain a formulation for the energy density Eε(t)/V (t) which
depends on mechanical deformations Fε,mech as well as the growth tensor
G. A further simplification is not possible. However, in current approaches
using the concept of multiple natural configurations, the energy typically
depends solely on Fε,mech, i.e. growth does not modify the postulated con-
stitutive relations.
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Thus, already our simple setup shows that in the case of anisotropic
growth it is necessary to consider not only the “right” deformations,
i.e. Eε(Fε,mech), but also an evolution of the constitutive relations, i.e.
Eε(Fε,mech,G). This can be interpreted as a remodelling of the biological
material induced by growth. The latter is often neglected and constitutive
relations are assumed to be independent of growth.

3. From discrete to continuum

Above, we have introduced a simple microscopic discrete model for
quasi-2D epithelial cell cultures. Considering large cell cultures a contin-
uum description is preferable in many applications. That is, cell cultures
are modelled as a continuous material. Here we propose a new modelling
framework based on the results of [17].

To do so, let us summarise the discrete model outlined so far: we consider
a cell culture with tightly adhering cells exhibiting a symmetric hexagonal
pattern. Growth, which we assume without loss of generality to be (locally)
constant, is only included via growth of cells / sub-cellular elements sizes;
cell fission is neglected. Furthermore, we assume that mechanics are in a
quasi-steady state with respect to growth. The mechanical behaviour of the
culture is modelled by the discrete energy functional

Eε(t) =
∑

i∈cells⊂Ω

JG
i (t)

(

Eperimeter

(

∑

α∈T ε
i

|Fε(t) · ζα,α+1|, Pi(t)
)

+
∑

j∈links

Elink

(

|Fε(t) · ξi,j|, Li,j(t)
)

)

,

(9)

with JG
i (t) = Vi(t)/V0(t). The actual shape of the culture is given by the

deformation χε
min minimising Eε(t). To facilitate further analysis, let us

assume χε ∈ Fε and thus also χε
min ∈ Fε with

Fε(Ω) ≡ {χε :Ω → R
2 : χε is linear on

each cell of the underlying discrete lattice }.

That is the discrete space, i.e. the finite dimensional χε : Gε ∩ Ω → R
2

maps, is embedded into an infinite dimensional continuous space, i.e. maps
χε : Ω → R

2 piecewise linear on each triangular cell of the lattice Gε.

Neglecting contributions due surface compressibility, i.e. κP = 0, the
model reduces to simple pair interactions. Under this assumption Eε is a
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special case of free energies describing atomistic interactions in crystal lat-
tices. The continuum limits of such energies have been studied in several
works using Γ-convergence [17] as well as other techniques [18,19]. Here we
will rely on the approach of Alicandro and Cicalese [17] using Γ-convergence
results from the theory of homogenisation of integrals [23]. This abstract ap-
proach allows to prove the existence of appropriate continuum limit energy
functionals. Furthermore, they show that considering periodic microscopic
geometries and assuming convex energies the continuum functionals can be
characterised directly via homogenisation formulae.

3.1. Existence of a continuum limit

Following the work of Alicandro and Cicalese [17] the following conjec-
ture should hold true:

Conjecture 3.1. For all times t and for every sequence (εj) of positive real
numbers converging to 0, there exists a sub-sequence (εjk) and a continuous
quasi-convex function Ψ : R2×2 → [0,∞), such that (Eεjk (t)), specified in
equation (9), Γ-converges with respect to the L2(Ω;R2)-topology to E(t) :
L2(Ω;R2) → [0,∞] defined as

E(χ(t), t) =

{
∫

Ω JG(t)Ψ(∇Xχ(t), t)dX if χ(t) ∈ W 1,2(Ω;R2)

∞ otherwise,

with JG(t) being the relative local volume change due to growth defined as
above.

Here, W 1,2(Ω;R2) is the standard Sobolev space [24]. The scaling with
JG(t) ensures that in the case of isotropic growth our approach agrees with
the notion of multiple natural configurations (cf. Section 2.3 and Section
4.1), since

∫

Ω · JG(t)dX is an integral over the grown configuration.

The embedding of W 1,2(Ω;R2) to L2(Ω;R2) is compact using the stan-
dard definition of L2 spaces [24]. Hence, Γ-convergence (Conjecture 3.1)
implies also the convergence of the discrete minimisers to a continuum min-
imiser of the limit functional. Since we are interested in the deformations
of the cell culture, this is the central result, rather than the convergence of
energies.

Conjecture 3.1 considers an unconstrained Γ-limit, i.e. no boundary
conditions are considered. However, often one is interested in problems
with prescribed boundary conditions. Corresponding convergence could be
proven. Similar results hold also for periodic boundary conditions. For more
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details on the proof of Conjecture 3.1 as well as on the corollarys consid-
ering different boundary conditions, we refer to the work of Alicandro and
Cicalese [17].

3.2. Homogenisation formula

Conjecture 3.1 states the existence of a continuum limit for Model 2.1.
However, it does not state how such a continuum limit looks like. Using the
symmetry of the underlying geometry, it is possible to derive an explicit
representation formula.

Conjecture 3.2. For all times t and for every sequence (εj) of positive real
numbers converging to 0, the sequence (Eεj (t)) given in (9) Γ-converges with
respect to the L2(Ω;R2)-topology to E(t) : L2(Ω;R2) → [0,∞] defined as

E(χ(t), t) ≡

{
∫

Ω JG(t)Ψ(∇Xχ(t), t)dX if χ(t) ∈ W 1,2(Ω;R2)

∞ otherwise,

where the integrand Ψ : R2×2 → [0,∞) is given by the following problem on
a unit cell

Ψ(∇Xχ(t), t) ≡Eperimeter

(

∑

α∈T ε=1

0

|∇Xχ(t) · ζα,α+1|, P0(t)
)

(10)

+
∑

j∈links

Elink

(

|∇Xχ(t) · ξ0,j|, L0,j(t)
)

with vectors ζα,α+1 and ξ0,j corresponding to the undeformed unit cell de-
noted with the index 0 (cf. Fig. 2).

As outlined above, Conjecture 3.2 implies that the minimisers of the
discrete energy Eεgiven in Model 2.1 converge to minimisers of the con-
tinuum energy E for ε → 0. Thus solutions of the following macroscopic
continuum model approximate solutions of the microscopic discrete Model
2.1.

Model 3.1. For any given time t, the quasi-stationary shape / deformation
χ(t) of the culture Ω is given by the minimiser of the following macroscopic
continuum energy

E(χ(t), t) ≡

{
∫

Ω JG(t)Ψ(∇Xχ(t), t)dX if χ(t) ∈ W 1,2(Ω;R2)

∞ otherwise,

with the energy density Ψ(∇Xχ(t), t) specified in Conjecture 3.2.

That is, Model 3.1 is the macroscopic continuum counterpart / macroscopic
approximation of the microscopic discrete Model 2.1.
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4. Macroscopic continuum mechanical models

The models considered above, i.e. Model 2.1 and Model 3.1, are based
on a static description in terms of energy functionals: shapes of tissues are
determined by the energy minimising configurations. The energy minima
can be calculated using the corresponding Euler-Lagrange equations [25].
Physically speaking, the corresponding forces of the energies are determined
and one looks for a shape where all forces equilibrate.

Instead of using the Euler-Lagrange equations, a relaxation approach
based on a dynamic formulation in the framework of conservation of mass
and linear momentum can be considered equivalently. The stress tensor, i.e.
surface force densities, can be obtained directly from variational principles
(in analogy to the Euler-Lagrange equations) on the basis of the multiscale
energy density Ψ derived above. Since this approach corresponds to the
derivation of the Euler-Lagrange equations, stationary states of Model 4.1
are minimisers of the continuum version of Model 2.1, i.e. Model 3.1. Such
a relaxation approach is of course somewhat more complex, but has several
advantages: it can be easily extended to situations, where dynamics play a
role, as well as it can be easily compared with existing continuum models,
e.g. [7–15].

Model 4.1. The evolution of the cell culture Ω(t) with Ω(0) ≡ Ω is deter-
mined by the following set of equations (for some fixed time T > 0)

d

dt
χ = v in Ω(t)× [0, T ),

d

dt
ρ = ρtrDG in Ω(t)× [0, T ),

d

dt
(ρv) = ∇x · σ(F,G) + vρtrDG in Ω(t)× [0, T ),

d

dt
G = g in Ω(t)× [0, T ),

with appropriate initial and boundary conditions.

Here, d
dtρ ≡ ∂

∂tρ+∇x ·(ρv) is the material derivative and ∇x the deriva-
tive with respect to Eulerian coordinates. The constant ρ is the material
density, χ the material deformation, v the material speed, and σ(F,G)
the stress tensor. The latter can be directly computed from the Euler-
Lagrange equations of Model 3.1, as shown below. The stress tensor de-
pends on the deformation tensor F = ∇xχ and the growth tensor G with
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DG = 1
2(

d
dtG ·G−1)T +( d

dtG ·G−1) and growth rate g. Above, we have im-
plicitly assumed that growth also implies the generation of momentum via
mass growth (cf. the source term ρvtrDG in the linear momentum balance),
which is a typical assumption considering growing cell cultures [13,14].

4.1. Derivation of the stress tensor σ

Using a variational approach, i.e. computing the corresponding Euler-
Lagrange equations of the continuum model, we can relate the energies
derived in Section 3 with corresponding forces. The forces are given by the
steepest decent of the L2-gradient of the free energy. To derive the steepest
decent of the L2-gradient (i.e. the Fréchet derivative [24]), let us consider
small variations χǫ = χ + ǫφ, where φ ∈ C∞(R2;R2) is an arbitrary test
function. Using d

dǫF(t)|ǫ=0 = ∇Xφ = (∇xφ) · F(t), we find

d

dǫ

∫

Ω
JG(t)Ψ(χ(t) + ǫφ, t)dX

∣

∣

∣

∣

ǫ=0

=

∫

Ω
JG(t)

[

∂

∂P0
Eperimeter

(

P0(t), P0(t)
)

∑

α∈T 1

0

1

2Lα,α+1(t)
ζ̂
T

α,α+1(t) ·
(

(∇xφ) + (∇xφ)
T
)

· ζ̂α,α+1(t)

+
∑

j∈links

∂

∂L0,j
Elink

(

L0,j(t), L0,j(t))
) 1

2L0,j(t)

ξ̂0,j(t) ·
(

(∇xφ) + (∇xφ)
T
)

· ξ̂0,j(t)

]

dX

where P0(t) = P0(F(t)), P0(t) = P0(G(t)), L0,j(t) = L0,j(F(t)), and

L0,j(t) = L0,j(G(t)). Here, ξ̂(t) = F(t) ·ξ and ζ̂(t) = F(t) ·ζ are the vectors
ξ and ζ in the deformed configuration. Using

∫

Ω(∇x · σ) · φdx = d
dǫE|ǫ=0

the stress tensor σ is recovered:

σ(F,G) =
detG

detF

( ∂

∂P0
Eperimeter

(

P0(F), P0(G)
)

∑

α∈T 1

0

1

2Lα,α+1(F)
(F · ζα,α+1)⊗ (F · ζα,α+1)

+
∑

j∈links

∂

∂L0,j
Elink

(

L0,j(F), L0,j(G)
) 1

2L0,j(F)

(F · (ξ0,j)⊗ (F · ξ0,j)
)

,

(11)
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where boundary terms have been neglected assuming appropriate bound-
ary conditions. Above we have formulated σ in terms of the deforma-
tion tensor F and the growth tensor G. Using F = Fmech · G and thus
detG/detF = 1/detFmech, a formulation of σ in terms of the mechanical
deformation tensor Fmech and the growth tensor G follows directly along
the lines of Section 2.3.1, i.e. we find σ(F,G) = σ(Fmech).

4.2. Linear elasticity

Mechanical properties of the macroscopic continuum mechanical model
(Model 4.1) are directly related to the microscopic properties of the idealised
single cells. Thus, in the isotropic case we can relate the Lamé constants µ
and λ, used in linear elasticity, directly with the properties of the discrete
atomistic model. Considering small deformations and restricting ourselves
to linear elasticity, i.e. performing a Taylor extension considering only linear
terms, we recover from equation (11)

µ =
3

2
κL,

λ =
3

2
κL + κP .

5. Discussion and Outlook

The presented approach offers the possibility to understand mechanobi-
ological phenomena in a truly multiscale manner resolving the conflict be-
tween the level of detail and computational complexity. Based on such a
multiscale approach it is e.g. possible to derive highly realistic models for
growing cell cultures, a fundamental system in developmental biology.

In this work, we have shown how concepts from Γ-convergence, in-
troduced for the derivation of continuum macroscopic models considering
atomistic interactions in crystal lattices [17], could also be applied to ac-
tive biomechanical systems, namely growing tissues. The analysis is based
on a simplified discrete microscopic model in terms of energy functionals,
which can be related to a large class of discrete models studying growing
tissues [1–6]. Following the ideas of [17], we have then outlined how to
derive from the discrete microscopic model a corresponding macroscopic
continuum energy functional for growing tissues using the concept of Γ-
convergence. Via a homogenisation formula microscopic details are taken
explicitly into account. The properties of Γ-convergence imply that energy
minimising configurations of the detailed microscopic model are approxi-
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mated by the ones of the macroscopic model. The latter ones can be cal-
culated via the corresponding Euler Lagrange equations directly or via a
relaxation approach leading to a continuum model in the framework of bal-
ance equations (balance of mass and linear momentum), typically used in
continuum approaches to growing tissues and cell cultures [7–15].

Although the discrete model could be considered as the more realistic
one, since it includes all the microscopic details, a continuum description
is often preferable. On the one hand it is more accessible by mathematical
analysis and on the other hand computations can be based on ”arbitrary”
coarse discretisations (saving computational effort) rather than the given
microscopic topologies. Our approach guarantees that the derived contin-
uum approximation is always sufficiently close to the microscopic discrete
description. Within the required accuracy it can be substituted for the dis-
crete model.

In the case of isotropic growth, our approach coincides with the no-
tion of multiple natural configurations [7,20] used in many continuum ap-
proaches [7–15]. It postulates a multiplicative decomposition of the defor-
mation gradient into a deformation related to mechanics and one related
to growth. However, in the case of anisotropic growth our approach postu-
lates that remodelling has to be considered, i.e. an evolution of the under-
lying stress-strain relationships (constitutive equations). Approaches using
multiple natural configurations directly usually neglect remodelling since
evolution laws for the stress tensor are not obvious. Our approach provides
appropriate evolution laws for the stress tensor via explicit homogenisation
formulae allowing a more realistic modelling of anisotropic growing cell cul-
tures, e.g. muscles or cultures of rod shaped bacteria.

Deriving the continuum model, we have relied on a number of assump-
tions for the sake of mathematical rigorousness. A detailed and careful
study how these assumptions could be lifted is an important part of future
work. So far, the approach could lift the assumption of a hexagonal sym-
metry in the underlying cell culture (which is necessary for the derivation
of appropriate homogenisation formulae) via heuristic averaging. More rig-
orous approaches should be investigated. Furthermore, we have restricted
ourselves to solely elastic cell cultures as in many other approaches [13,14].
Since, experimental findings suggest that a Maxwell visco-elastic descrip-
tion could be more appropriate in some tissues / cultures [26], an extension
of the ideas presented here has to be investigated. A sketch of a formal
approach can be found in [27].
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Within this work, we have restricted ourselves to a simplified model
of existing discrete microscopic models of tissues and cell cultures [1,3–6]
without a specific application in mind. Experimental results concerning mi-
croscopic details of exact cell structures in growing tissues as necessary for
the proposed multiscale approach are lacking. Since imaging techniques are
advancing extremely fast this information should be available in the near
future. In combination with detailed microscopic measurements of mechani-
cal moduli of microscopic sub-elements our approach would provide detailed
quantitative models for tissues and cell cultures. These are extremely diffi-
cult to obtain by experimental means alone. We believe that our multiscale
approach is also very promising with respect to the derivation of appropriate
macroscopic models based on microscopic details in many other biological
applications where reorganisation or growth of sub-cellular elements play
an important role, e.g. in migrating keratocytes [28].
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