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Abstract

The use of parallel computing makes it feasible to simulate realistic seismological

events, whose reconstruction requires wide domains, high frequencies and the introduc-

tion of the dissipation terms. The propagation problem of seismic waves is a key feature

of the earthquake dynamics that we are interested in numerically modeling and simu-

lating. In particular, in this work we present several preliminary results about the load

balancing for the parallel resolution of a simulation of the propagation of seismic waves

in a 3D heterogeneous medium. The Finite Element Method is employed for the spatial

discretization by using non–structured tetrahedral meshes. The Newmark method is used

for the time discretization. With the aim to study a priori the load balancing, we intro-

duce two performance indices: closing nodes and node balancing. In particular, the first

one estimates the amount of processor data, the latter provides information on work–load

distribution. The variation of these indices as functions of the number of processors and

of the number of nodes of the grid is then investigated.
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1. Introduction

In the context of numerical simulations of seismic events, the seismic
wave propagation problem is accomplished by numerically solving the par-
tial differential equations of elastic wave propagation. A numerical approxi-
mation of these equations over the spatial domain can be realized by means
of Finite Difference (FDM) [1], Finite Element (FEM) [2–4], Finite Volume
(FVM) [5,6] and Spectral Element (SEM) [7,8] methods.
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In this work, we adopt FEM because the integro–differential formula-
tion let to consider the elastic parameters with discontinuities and the free
boundary conditions are automatically satisfied. Moreover, it exploits for
non–structured meshes, that are suitable to numerically reconstruct the
near surface geology, because they better reconstruct the topography of the
site [9].

However, FEM usually requires huge computational resources, i.e., a
large amount of memory and a long computational time. For this reason,
the large scale of the problem associated with modeling strong motion in
3D is usually managed by using techniques of high performance computing.
Nevertheless, parallel platforms supporting FEM are difficult to built up.
Indeed, a simulation based on FEM and on non–structured meshes involves
indirect addressing to work with very large matrices. Further, an amiss load
partitioning among processors may engender a high computational cost [2].

This paper deals with the investigation of the load balancing that can
be obtained by solving a 3D seismic problem in a parallel computing envi-
ronment. The seismic wave propagation is described by the heterogeneous
elastic equations supplemented by suitable initial and boundary conditions
(IBVP). Details on our model are provided in Section 2. With the aim to
realize a parallel code for solving this problem, a suitable analysis of mesh
partitioning and data parceling is here presented. The main idea behind our
parallel approach is to split the global problem (that may be very large)
in local ones that have the same structure as the original one but with a
smaller size.

To this purpose, a significant support is given by two efficient tools avail-
able in the literature: LaGrit, to implement the mesh, and MeTiS, for the
domain decomposition. In order to analyze a priori the load balancing, we
introduce two performance indices: the index of closing nodes (CN) and the
index of node balancing (NB). They depend on the number of grid nodes,
processors and nodes shared by processors (called overlapping nodes). The
CN index is used to estimate the size of local mass matrices, while the NB
index gives information on the goodness of the node distribution among
processors. In the last section of the paper, several experimental tests are
discussed. They show that, analyzing the trend of the indices introduced
above, it is possible to estimate a priori the optimal number of required
processors according to the dimension of the problem.

2. The seismic wave propagation model

We introduce the mathematical formulation of the seismic wave propa-
gation in heterogeneous media. Let R3 be the three–dimensional real space
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and x = (x, y, z) ∈ R3 a generic vector; let f(x, y) be a regular function in
R2, we define the 3D domain Ω as

Ω =
{

(x, y, z) ∈ R3 : z > f(x, y), (x, y) ∈ R2
}

whose boundary

∂Ω =
{

(x, y, z) ∈ R3 : z = f(x, y), (x, y) ∈ R2
}

describes the so–called free-surface of Ω.
Then, the wave propagation is described by the following IBVP, for het-
erogeneous media, that is a simplification of the model presented in [10],
without dissipation term,

(1)



ρ(x)
∂2u

∂t2
= ∇ · σ + F(x, t), ∀(x, t) ∈ Ω× (0,+∞),

σ = (λ(x) + µ(x))∇u,
u(x, 0) = 0, ∀x ∈ Ω,

∂

∂t
u(x, 0) = 0, ∀x ∈ Ω,

∂

∂n
σ(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0,+∞),

where u is the displacement, the functions ρ(x) (mass density), λ(x) and
µ(x) (the Lamé constants) characterize the elasticity of the medium, and

F(x, t) is the external forces; moreover, t is the time, ∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
,

and n is the outward normal unit to ∂Ω.

3. Numerical dicretization

We adopted the FEM to numerically integrate the IBVP defined in
(1) on non–structured meshes with a step dh depending on the maximum
frequency fmax and on the minimum wave velocity vmin in Ω as follows:

dh =
vmin

nfmax

where n represents the number of evaluations per wavelength needed to
cover the minimum frequency for a non dispersive propagation, [25]. The
various experimentation provided in [26] shows that n = 6 is a value that
guarantees the accuracy of the numerical solution. In order to avoid the
reflections at the boundary, we introduce the so–called absorbing boundary
conditions [11–16], a numerical scheme that makes the perimeter of the
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computational grid transparent to outward moving waves. In this case, we
assumed the Caserta–Firmani–Ruggiero transparent conditions [3]. In the
weak formulation we adopted the Galerkin method [17], yielding

(2) M2d
2U

dt2
+M1dU

dt
+M0U = f .

M2, M1 and M0 are sparse square matrices of order equal to 3 times the
node number. Their entries are the integral on Ω of a combination of the
basis functions N(x) or their derivatives (see [18] for details).

The time discretization has been implemented through the Newmark
method, [27,28] with time step δt ≤ dh/vmax, and parameters γ1 = 1/4
and γ2 = 1/2. The optimal choice of these parameters, has been largely
investigated and discussed in [26]. So, we get

(3)


AÜn+1 = bn+1,

U̇n+1 = U̇n + δt
(

(1− γ2) Ün + γ2Ü
n+1
)
,

Un+1 = Un + δtU̇n +
δt2

2

(
(1− γ1) Ün + γ1Ü

n+1
)
,

with

A = M2 + γ2δtM
1 + γ1

δt2

2
M0,

bn+1 = fn+1 −
[
(1− γ2)M1 +

δt2

2
(1− γ1)M0

]
Ün

−
(
M1 + δtM0

)
U̇n −M0Un.

3.1. Mass matrix properties

In the following we refer to the matrix A defined above as mass matrix.
Note that the matrix A is sparse and its entries corresponding to inner
nodes are symmetric, while those corresponding to boundary ones are not
symmetric. For this reason, we re-order the nodes: first of all, we tidy up
the inner nodes and then, in queue, the boundary ones. Such a simple
strategy allows us to minimize the matrix allocation, storing it by means
of an innovative version of CSR format [19]. So, we actually store less than
half of the entries of the mass matrix.
In Fig. 1, we show the sparsity of the matrix A with 1.728 nodes, after their
re-ordering. It is characterized by an arrow structure, whose non symmetric
part is delimited by red lines. The entries of A are (3 · 1.728)× (3 · 1.728) =
26.873.856, and non–zero elements are 203.454. By adopting the strategy
presented above, we only store 135.630 elements.
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Figure 1. Sparsity of the matrix A relative to a grid with 1728 nodes. The red lines
represent the bound between inner and border nodes.

4. The parallel scheme

The complexity of simulating the wave propagation in wide and het-
erogeneous media, by adopting high frequencies, forces this problem to be
dealt with high performance computing techniques. In fact, FEM usually
requires huge resources, i.e., a large amount of memory and a high compu-
tational cost, that may exceed the software and hardware capabilities of a
monoprocessor. The time integration of the linear system (3) takes a long
computational time in such a way that days are needed to simulate one
minute of soil shaking even if the fastest optimized sequential algorithm
is adopted. For this reason, in this section we present a novel parallel ap-
proach to decompose the original problem into sub–problems with smaller
size. We adopt some tools available in the literature, such as LaGrit [20]
and MeTiS [21], to achieve our goal. The discretization of the physical
domain is obtained by using LaGrit, a library developed by Los Alamos
National Security, LLC at Los Alamos National Laboratory (LANL) with
the U.S. Department of Energy (DOE). The mesh generation uses a Delau-
nay tetrahedralization algorithm that respects material interfaces [22,23].
The obtained mesh is partitioned by adopting MeTiS. We have chosen this
library because it is a good tool able to quickly produce high–quality parti-
tions also for a wide grid. Moreover, by minimizing the edgecut, the applied
partitioning algorithm also minimizes the connections between processors.
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4.1. Mesh partitioning

Once LaGrit generates the mesh, the set of its constituting elements
are partitioned into initial subdomains, by using MeTiS. It is important to
remark that the obtained sets of tetrahedra and nodes are disjoint. Then,
to attain the complete subdomains, we add to the initial node partition the
vertices of tetraedra which are not included yet. They are shared by more
than one subdomain and are called overlapping nodes. Fig. 2 illustrates the
result of the Delaunay tetrahedralization algorithm applied to a homoge-
neous cube with side L = 700 meters, vmin = 1, 800 Km/s and fmax = 15
Hz. The overlapping nodes are pointed out.

Figure 2. 16464 elements are given by the Delaunay tetrahedralization of a homogeneous
cube with side L = 700 meters, vmin = 1, 800 Km/s and fmax = 15 Hz. As shown, they
are distributed among 10 processors. Overlapping nodes are emphasized too.

4.2. Parceling

Once initial subdomains are achieved, our aim is to distribute them
among processors. If the physical domain is homogeneous, each subdomain
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is mapped one–to–one into a processor. Note that it is important to gen-
erate a global–to–local map, which allows the identification of a node on a
processor by its global label, and vice versa [2,24].

When initial subdomains are distributed among processors, each of them
identifies the overlapping nodes, by means of an efficient procedure, and
generates its complete subdomain. Then, the local mass matrix, which is a
non–zero one with a symmetric pattern, is assembled. Nodes are re–ordered
in such a way that the nodes lying on the physical domain, called boundary
nodes, are enqueued. Thus, after a suitable re–ordering of local nodes, as
described in the previous section, we can store only about half of the entries
of the matrix, by means of the optimized CSR format.

All the local mass matrices have the same features of the global one.
Indeed, the structure of the matrix and its properties are preserved. Thus,
they are arrow matrices, with a symmetric pattern and diagonally dominant
almost everywhere. For the sake of simplicity, we consider the mass matrix
depicted in Fig. 1 and we split the original problem among 4 processors, so
obtaining the local matrices shown in Fig. 3. In this case, the global matrix
has 1728× 1.728 = 2.985.984 blocks 3× 3, and only 22.606 entries are non-
zero. The matrix in Fig. 3(a) has 541×541 = 292.681 blocks 3×3, and only
6.317 entries are non–zero. The matrix in Fig. 3(b) has 545×545 = 297.025
blocks 3 × 3, and only 6.427 entries are non–zero. The matrix in Fig. 3(c)
has 534× 534 = 285.156 blocks 3× 3, and only 6.266 entries are non–zero.
The matrix in Fig. 3(d) has 548 × 548 = 300.304 blocks 3 × 3, and only
6.426 entries are non–zero.

5. Numerical results

Once local mass matrices are stored, each processor solves the linear
system (3) reduced to its own subdomain. The local solutions are assem-
bled with the aim of reconstructing the global one. In particular, on the
overlapping nodes we applied a weighted mean, where the weights are pro-
portional to the node multiplicity in each subdomain. For this reason, it is
important to know a priori the role played by the overlapping nodes in the
decomposition of the problem among processors. In this section, we present
some results on the load balancing associated with the mesh partitioning.
With this aim, we study CN and NB indices.
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(a) Processor 0: local mass matrix (b) Processor 1: local mass matrix

(c) Processor 2: local mass matrix (d) Processor 3: local mass matrix

Figure 3. Sparsity of the matrices obtained by splitting the original problem among 4
processors. The red lines evidence the limit between inner and boundary nodes.

5.1. CN index

The CN index represents the mean of the overlapping nodes as a func-
tion of the number of nodes,

β =
NO

N

where

• NO is the total number of overlapping nodes assigned to each pro-
cessor;
• N is the number of total nodes.

It gives information on how much the overlapping nodes weight upon the
dimension of the local mass matrix. In fact, if the work–load is equally
distributed among np processors, then the initial number of nodes on pro-
cessor is N/np. For the sake of simplicity, we suppose that the number c of
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overlapping nodes is the same on each processor. Thus, as c = βN/np, the
size of local matrix A is

size(A) =
N

np
+ c =

N

np
(1 + β) .

We obtain an analogous result also when c is not constant.

Figure 4. CN index: β is the ratio of the total number of overlapping nodes and the
total number of nodes. It is useful to estimate the dimension of local mass matrices. We
present the trend of the parameter β versus the number of processors from 4 to 128.
Several examples are shown fixing the number of the elements.

We remark that:

• if β = np−1, we have the worst case, because each processor has N
nodes. In fact each processor sends its local nodes to all the others.
In other words, the set of overlapping nodes coincides with the set
of total nodes with multiplicity np.
• if β << 1, then the local matrix size is not much increased by the

overlapping nodes in such a way that they do not weight on local
matrix dimension and we get

size(A) ≈ N

np
.
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Fig. 4 shows the trend of closing nodes versus the number of proces-
sors. Each line represents this parameter corresponding to a fixed number
of nodes. The curves are increasing independently the node number. Any-
way, the various experimental tests, we have carried out, show that a good
arrangement between local mass matrix size and the number of employed
processors occurs when β < 0.25.

5.2. NB index

The NB index represents the balance of node distribution among pro-
cessors. It is given by

α =
Nt

N · np
where

• Nt is the number of nodes counted with their multiplicity (an inner
node has multiplicity 1, while an overlapping node has multiplicity
equal to the number of processors sharing it);
• N is the number of total nodes;
• np is the number of processors.

The following points are worth of being underlined:

• if α = 1, then the number of nodes distributed in each subdomain
corresponds exactly to the number of total nodes. This is the unbal-
anced case. In fact, the local domain coincides with the global one,
and then each processor solves the complete problem.
• if α = 1/np, the nodes are uniformly distributed among each subdo-

main, so that they are exactly N/np in each processor. This means
that the work–load is equally distributed among processors. Never-
theless, it is an ideal case because the set of overlapping nodes can
not be empty.

Fig. 5 shows the trend of CN index versus the number of processors.
Each curve represents this parameter corresponding to a fixed number of
nodes. Note that the red star points identify the case α = 1/np, that is the
ideal one. As expected, α approaches the ideal curve as the number of nodes
increases. Anyway, the several tests performed show that when α < 0.025,
it is not necessary to increase the number of employed processors, according
to the β results.
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Figure 5. NB index: α is the ratio of the sum of nodes of each processor and the total
nodes number times the number of processors. This parameter provides another evalu-
ation of the matrix size growth caused by the overlapping nodes. We present the trend
of the parameter α versus the number of processors from 4 to 128. Several examples are
shown fixing the number of nodes.

6. Conclusions

The aim of this work was to describe some preliminary results of our
portable, computationally efficient and readable parallel code developed for
simulating 3D wave propagation in heterogeneous media with arbitrary to-
pography. For this reason, first of all we presented an accurate and a priori
analysis of the performance and the work–load balance among processors.
To do so, we introduced the node balancing and closing node indices. The
numerical results presented in this work provide useful information to ap-
proach the ideal case of load balance and so determine the optimal number
of required processors according to the dimension of the problem.

Our next step will be the implementation of a suitable parallel algorithm
for solving the achieved local linear systems. Even though many tools for
solving PDEs by using FEM currently exist, current work is in progress
to optimize the solver associated with our type of problems. Preliminary
numerical simulations have been performed showing that we can correctly
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and efficiently simulate the dynamics of interaction between the seismic
radiation caused by earthquakes and the near surface geology. This will be
the subject of a forthcoming paper.

Acknowledgments

This work has been supported by GNCS–INdAM, and Research Grants
of the University of Messina. We are very grateful to Arrigo Caserta
(INGV, Rome), Bruno Firmani (University of Trento), Piero Lanucara
(CASPUR, Rome), Luigia Puccio (University of Messina), and Vittorio
Ruggiero (CASPUR, Rome) for their advises and their precious scientific
support.

REFERENCES

1. R. W. Graves, Simulating seismic wave propagation in 3d elastic me-
dia using staggered-grid finite differences, Bulletin of the Seismological
Society of America, vol. 86, pp. 1091–1106, 1996.

2. H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R. O’hallaron, J. R.
Shewchuk, and J. Xu, Earthquake ground motion modeling on parallel
computers, in In Proc. Supercomputing 96, 1996.

3. V. Ruggiero, P. Lanucara, M. P. Busico, A. Caserta, and B. Firmani,
Numerical Modelling of the ground motion :a parallel approach for finite
element method, pp. 487–495. World Scientific, 2004.

4. W. D. Smith, The application of finite element analysis to body
wave propagation problems, Geophysical Journal International, vol. 42,
pp. 747–768, 1975.

5. K. R. Arun, M. Kraft, M. Lukáčová-Medvid’ová, and P. Prasad, Fi-
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